257 research outputs found

    A review of the decoherent histories approach to the arrival time problem in quantum theory

    Full text link
    We review recent progress in understanding the arrival time problem in quantum mechanics, from the point of view of the decoherent histories approach to quantum theory. We begin by discussing the arrival time problem, focussing in particular on the role of the probability current in the expected classical solution. After a brief introduction to decoherent histories we review the use of complex potentials in the construction of appropriate class operators. We then discuss the arrival time problem for a particle coupled to an environment, and review how the arrival time probability can be expressed in terms of a POVM in this case. We turn finally to the question of decoherence of the corresponding histories, and we show that this can be achieved for simple states in the case of a free particle, and for general states for a particle coupled to an environment.Comment: 10 pages. To appear in DICE 2010 conference proceeding

    Finite-temperature Screening and the Specific Heat of Doped Graphene Sheets

    Full text link
    At low energies, electrons in doped graphene sheets are described by a massless Dirac fermion Hamiltonian. In this work we present a semi-analytical expression for the dynamical density-density linear-response function of noninteracting massless Dirac fermions (the so-called "Lindhard" function) at finite temperature. This result is crucial to describe finite-temperature screening of interacting massless Dirac fermions within the Random Phase Approximation. In particular, we use it to make quantitative predictions for the specific heat and the compressibility of doped graphene sheets. We find that, at low temperatures, the specific heat has the usual normal-Fermi-liquid linear-in-temperature behavior, with a slope that is solely controlled by the renormalized quasiparticle velocity.Comment: 9 pages, 5 figures, Submitted to J. Phys.

    Supersymmetric Axion-Neutrino Merger

    Get PDF
    The recently proposed supersymmetric A4A_4 model of the neutrino mass matrix is modified to merge with a previously proposed axionic solution of the strong CP problem. The resulting model has only one input scale, i.e. that of A4A_4 symmetry breaking, which determines both the seesaw neutrino mass scale and the axion decay constant. It also solves the μ\mu problem and conserves R parity automatically.Comment: 7 pages, no figur

    Exact Floquet states of a driven condensate and their stabilities

    Full text link
    We investigate the Gross-Pitaevskii equation for a classically chaotic system, which describes an atomic Bose-Einstein condensate confined in an optical lattice and driven by a spatiotemporal periodic laser field. It is demonstrated that the exact Floquet states appear when the external time-dependent potential is balanced by the nonlinear mean-field interaction. The balance region of parameters is divided into a phase-continuing region and a phase-jumping one. In the latter region, the Floquet states are spatiotemporal vortices of nontrivial phase structures and zero-density cores. Due to the velocity singularities of vortex cores and the blowing-up of perturbed solutions, the spatiotemporal vortices are unstable periodic states embedded in chaos. The stability and instability of these Floquet states are numerically explored by the time evolution of fidelity between the exact and numerical solutions. It is numerically illustrated that the stable Floquet states could be prepared from the uniformly initial states by slow growth of the external potential.Comment: 14 pages, 3 eps figures, final version accepted for publication in J. Phys.

    Renormalization of Hamiltonian Field Theory; a non-perturbative and non-unitarity approach

    Get PDF
    Renormalization of Hamiltonian field theory is usually a rather painful algebraic or numerical exercise. By combining a method based on the coupled cluster method, analysed in detail by Suzuki and Okamoto, with a Wilsonian approach to renormalization, we show that a powerful and elegant method exist to solve such problems. The method is in principle non-perturbative, and is not necessarily unitary.Comment: 16 pages, version shortened and improved, references added. To appear in JHE

    Detecting matter effects in long baseline experiments

    Full text link
    Experiments strongly suggest that the flavour mixing responsible for the atmospheric neutrino anomaly is very close to being maximal. Thus, it is of great theoretical as well as experimental importance to measure any possible deviation from maximality. In this context, we reexamine the effects of matter interactions in long baseline neutrino oscillation experiments. Contrary to popular belief, the muon neutrino survival probability is shown to be quite sensitive to matter effects. Moreover, for moderately long baselines, the difference between the survival probilities for νμ\nu_\mu and νˉμ\bar\nu_\mu is shown to be large and sensitive to the deviation of Uμ3|U_{\mu 3}| from maximality. Performing a realistic analysis, we demonstrate that a muon-storage ring ν\nu-source alongwith an iron calorimeter detector can measure such deviations. (Contrary to recent claims, this is not so for the NuMI--{\sc minos} experiment.) We also discuss the possible correlation in measuring Uμ3U_{\mu 3} and Ue3U_{e3} in such experiment.Comment: 18 pages, LaTe

    Two-Loop Planar Corrections to Heavy-Quark Pair Production in the Quark-Antiquark Channel

    Full text link
    We evaluate the planar two-loop QCD diagrams contributing to the leading color coefficient of the heavy-quark pair production cross section, in the quark-antiquark annihilation channel. We obtain the leading color coefficient in an analytic form, in terms of one- and two-dimensional harmonic polylogarithms of maximal weight 4. The result is valid for arbitrary values of the Mandelstam invariants s and t, and of the heavy-quark mass m. Our findings agree with previous analytic results in the small-mass limit and numerical results for the exact amplitude.Comment: 30 pages, 5 figures. Version accepted by JHE

    Gluon mass generation in the PT-BFM scheme

    Get PDF
    In this article we study the general structure and special properties of the Schwinger-Dyson equation for the gluon propagator constructed with the pinch technique, together with the question of how to obtain infrared finite solutions, associated with the generation of an effective gluon mass. Exploiting the known all-order correspondence between the pinch technique and the background field method, we demonstrate that, contrary to the standard formulation, the non-perturbative gluon self-energy is transverse order-by-order in the dressed loop expansion, and separately for gluonic and ghost contributions. We next present a comprehensive review of several subtle issues relevant to the search of infrared finite solutions, paying particular attention to the role of the seagull graph in enforcing transversality, the necessity of introducing massless poles in the three-gluon vertex, and the incorporation of the correct renormalization group properties. In addition, we present a method for regulating the seagull-type contributions based on dimensional regularization; its applicability depends crucially on the asymptotic behavior of the solutions in the deep ultraviolet, and in particular on the anomalous dimension of the dynamically generated gluon mass. A linearized version of the truncated Schwinger-Dyson equation is derived, using a vertex that satisfies the required Ward identity and contains massless poles belonging to different Lorentz structures. The resulting integral equation is then solved numerically, the infrared and ultraviolet properties of the obtained solutions are examined in detail, and the allowed range for the effective gluon mass is determined. Various open questions and possible connections with different approaches in the literature are discussed.Comment: 54 pages, 24 figure

    Growth, profits and technological choice: The case of the Lancashire cotton textile industry

    Get PDF
    Using Lancashire textile industry company case studies and financial records, mainly from the period just before the First World War, the processes of growth and decline are re-examined. These are considered by reference to the nature of Lancashire entrepreneurship and the impact on technological choice. Capital accumulation, associated wealth distributions and the character of Lancashire business organisation were sybiotically linked to the success of the industry before 1914. However, the legacy of that accumulation in later decades, chronic overcapacity, formed a barrier to reconstruction and enhanced the preciptious decline of a once great industry

    Super-Hubble de Sitter Fluctuations and the Dynamical RG

    Full text link
    Perturbative corrections to correlation functions for interacting theories in de Sitter spacetime often grow secularly with time, due to the properties of fluctuations on super-Hubble scales. This growth can lead to a breakdown of perturbation theory at late times. We argue that Dynamical Renormalization Group (DRG) techniques provide a convenient framework for interpreting and resumming these secularly growing terms. In the case of a massless scalar field in de Sitter with quartic self-interaction, the resummed result is also less singular in the infrared, in precisely the manner expected if a dynamical mass is generated. We compare this improved infrared behavior with large-N expansions when applicable.Comment: 33 pages, 4 figure
    corecore