123 research outputs found

    Tetralogy of Fallot: Imaging of common and uncommon associations by multidetector CT

    Get PDF
    AbstractPurposeTo demonstrate the superior role of multidetector computed tomography (MDCT) in delineation of the extracardiac vascular abnormalities including the pulmonary arterial tree, major aortopulmonary collateral arteries (MAPCAs), patent ductus arteriosus (PDA), and also the detection of the common and uncommon findings in Fallot Tetralogy cases for proper pre-surgical evaluation.Material and methodsA retrospective study of all multidetector CT images acquired to evaluate suspected cases of Tetralogy of Fallot sent by their respective referring physicians between April 2009 and August 2010. A total of 23 cases were included in this study. MDCT protocol, image analysis and calculations used in the diagnosis are explained in detail.ResultsDetailed explanation of the MDCT imaging findings in the 23 cases with Tetralogy of Fallot, as well as the common and uncommon associations of the disease, namely pulmonary atresia, MAPCAs, PDAs, atrial septal defects (ASDs), right sided aortic arch, and a few less common associations.ConclusionA customized approach to MDCT imaging improves the diagnostic accuracy and reduces unneeded prolongation of the study and sedation times. A careful preoperative perceptive of the complex cardiovascular anatomy in patients with Tetralogy of Fallot aids in exposing the patient to a directed and prepared surgical approach

    The Palestinian Terrestrial Vertebrate Fauna Preserved at the Biology Exhibitions of the Universities of the Gaza Strip

    Get PDF
    The Gaza Strip (365 km2 ) of Palestine (27,000 km2 ) is home to a wealth of terrestrial vertebrate fauna. Some of these faunistic species find their ways to preservation at the local universities. Hence, the current study comes to document the Palestinian terrestrial vertebrate fauna acquired by the biology exhibitions (BEs) of Al-Azhar University, Islamic University of Gaza and Al-Aqsa University that are located at the Gaza City of the Gaza Strip. The amphibians, reptiles, birds and mammals preserved at BEs of the universities in question were surveyed and scientifically classified during a three-month period extending from January to March, 2012. The study showed that all BEs of local universities are underdeveloped, lacking attention and suffer from specimen scarcity and good preservation. The BE at Al-Azhar University is the best in the arrangement and preservation of bird specimens. A total number of 200 specimens belonging to 54 terrestrial vertebrate fauna species, 39 families and 17 orders was recorded at BEs. Reptiles constituted 40.7% of the total species recorded, followed by birds (38.9%), mammals (14.8%) and amphibians (5.6%). The Islamic University of Gaza was considered the best in terms of the number of preserved species (39.8%), followed by Al-Azhar University (36.3%) and Al-Aqsa University (23.9%). The Common Toad (Bufo viridis) was the most preserved among the amphibian species recorded. Squamata was the biggest reptilian order, comprising 20 species (8 lizards and 12 snakes), with the Syrian Black Snake (Coluber jugularis asianus) was the commonest. The Palestine Viper (Vipera palaestinae) is endemic to Palestine and most venomous and dangerous to human health. The Great White Pelican (Pelecanus onocrotalus) was the largest Palestinian bird preserved at BE of Al-Azhar University. The Egyptian Mongoose (Herpestes ichneumon) and the Common Badger (Meles meles) were the biggest mammalian specimens preserved, while the Palestine Mole-rat (Spalax leucodon ehrenbergi) was the only Palestine endemic species encountered among the preserved mammals. Finally, the improvement of BEs of local universities and the construction of a Central Museum of Natural History is highly recommended in order to change the Palestinians’ attitudes toward a sustainable ecological conservation in the Gaza Strip

    A Naturally Occurring Mutation in ropB Suppresses SpeB Expression and Reduces M1T1 Group A Streptococcal Systemic Virulence

    Get PDF
    Epidemiological studies of group A streptococcus (GAS) have noted an inverse relationship between SpeB expression and invasive disease. However, the role of SpeB in the course of infection is still unclear. In this study we utilize a SpeB-negative M1T1 clinical isolate, 5628, with a naturally occurring mutation in the gene encoding the regulator RopB, to elucidate the role of RopB and SpeB in systemic virulence. Allelic exchange mutagenesis was used to replace the mutated ropB allele in 5628 with the intact allele from the well characterized isolate 5448. The inverse allelic exchange was also performed to replace the intact ropB in 5448 with the mutated allele from 5628. An intact ropB was found to be essential for SpeB expression. While the ropB mutation was shown to have no effect on hemolysis of RBC's, extracellular DNase activity or survival in the presence of neutrophils, strains with the mutated ropB allele were less virulent in murine systemic models of infection. An isogenic SpeB knockout strain containing an intact RopB showed similarly reduced virulence. Microarray analysis found genes of the SpeB operon to be the primary target of RopB regulation. These data show that an intact RopB and efficient SpeB production are necessary for systemic infection with GAS

    Pathway Projector: Web-Based Zoomable Pathway Browser Using KEGG Atlas and Google Maps API

    Get PDF
    BACKGROUND: Biochemical pathways provide an essential context for understanding comprehensive experimental data and the systematic workings of a cell. Therefore, the availability of online pathway browsers will facilitate post-genomic research, just as genome browsers have contributed to genomics. Many pathway maps have been provided online as part of public pathway databases. Most of these maps, however, function as the gateway interface to a specific database, and the comprehensiveness of their represented entities, data mapping capabilities, and user interfaces are not always sufficient for generic usage. METHODOLOGY/PRINCIPAL FINDINGS: We have identified five central requirements for a pathway browser: (1) availability of large integrated maps showing genes, enzymes, and metabolites; (2) comprehensive search features and data access; (3) data mapping for transcriptomic, proteomic, and metabolomic experiments, as well as the ability to edit and annotate pathway maps; (4) easy exchange of pathway data; and (5) intuitive user experience without the requirement for installation and regular maintenance. According to these requirements, we have evaluated existing pathway databases and tools and implemented a web-based pathway browser named Pathway Projector as a solution. CONCLUSIONS/SIGNIFICANCE: Pathway Projector provides integrated pathway maps that are based upon the KEGG Atlas, with the addition of nodes for genes and enzymes, and is implemented as a scalable, zoomable map utilizing the Google Maps API. Users can search pathway-related data using keywords, molecular weights, nucleotide sequences, and amino acid sequences, or as possible routes between compounds. In addition, experimental data from transcriptomic, proteomic, and metabolomic analyses can be readily mapped. Pathway Projector is freely available for academic users at (http://www.g-language.org/PathwayProjector/)

    Identifying Low pH Active and Lactate-Utilizing Taxa within Oral Microbiome Communities from Healthy Children Using Stable Isotope Probing Techniques

    Get PDF
    <div><h3>Background</h3><p>Many human microbial infectious diseases including dental caries are polymicrobial in nature. How these complex multi-species communities evolve from a healthy to a diseased state is not well understood. Although many health- or disease-associated oral bacteria have been characterized <em>in vitro</em>, their physiology within the complex oral microbiome is difficult to determine with current approaches. In addition, about half of these species remain uncultivated to date with little known besides their 16S rRNA sequence. Lacking culture-based physiological analyses, the functional roles of uncultivated species will remain enigmatic despite their apparent disease correlation. To start addressing these knowledge gaps, we applied a combination of Magnetic Resonance Spectroscopy (MRS) with RNA and DNA based Stable Isotope Probing (SIP) to oral plaque communities from healthy children for <em>in vitro</em> temporal monitoring of metabolites and identification of metabolically active and inactive bacterial species.</p> <h3>Methodology/Principal Findings</h3><p>Supragingival plaque samples from caries-free children incubated with <sup>13</sup>C-substrates under imposed healthy (buffered, pH 7) and diseased states (pH 5.5 and pH 4.5) produced lactate as the dominant organic acid from glucose metabolism. Rapid lactate utilization upon glucose depletion was observed under pH 7 conditions. SIP analyses revealed a number of genera containing cultured and uncultivated taxa with metabolic capabilities at pH 5.5. The diversity of active species decreased significantly at pH 4.5 and was dominated by <em>Lactobacillus</em> and <em>Propionibacterium</em> species, both of which have been previously found within carious lesions from children.</p> <h3>Conclusions/Significance</h3><p>Our approach allowed for identification of species that metabolize carbohydrates under different pH conditions and supports the importance of Lactobacilli and Propionibacterium in the development of childhood caries. Identification of species within healthy subjects that are active at low pH can lead to a better understanding of oral caries onset and generate appropriate targets for preventative measures in the early stages.</p> </div

    Using Evolutionary Conserved Modules in Gene Networks as a Strategy to Leverage High Throughput Gene Expression Queries

    Get PDF
    Background: Large-scale gene expression studies have not yielded the expected insight into genetic networks that control complex processes. These anticipated discoveries have been limited not by technology, but by a lack of effective strategies to investigate the data in a manageable and meaningful way. Previous work suggests that using a pre-determined seednetwork of gene relationships to query large-scale expression datasets is an effective way to generate candidate genes for further study and network expansion or enrichment. Based on the evolutionary conservation of gene relationships, we test the hypothesis that a seed network derived from studies of retinal cell determination in the fly, Drosophila melanogaster, will be an effective way to identify novel candidate genes for their role in mouse retinal development. Methodology/Principal Findings: Our results demonstrate that a number of gene relationships regulating retinal cell differentiation in the fly are identifiable as pairwise correlations between genes from developing mouse retina. In addition, we demonstrate that our extracted seed-network of correlated mouse genes is an effective tool for querying datasets and provides a context to generate hypotheses. Our query identified 46 genes correlated with our extracted seed-network members. Approximately 54% of these candidates had been previously linked to the developing brain and 33% had been previously linked to the developing retina. Five of six candidate genes investigated further were validated by experiments examining spatial and temporal protein expression in the developing retina. Conclusions/Significance: We present an effective strategy for pursuing a systems biology approach that utilizes an evolutionary comparative framework between two model organisms, fly and mouse. Future implementation of this strategy will be useful to determine the extent of network conservation, not just gene conservation, between species and will facilitate the use of prior biological knowledge to develop rational systems-based hypotheses

    Regional unit definition for the nucleus of comet 67P/Churyumov-Gerasimenko on the SHAP7 model

    Get PDF
    The previously defined regions on the nucleus of comet 67P/Churyumov-Gerasimenko have been mapped back onto the 3D SHAP7 model of the nucleus (Preusker et al., 2017). The resulting regional definition is therefore self-consistent with boundaries that are well defined in 3 dimensions. The facets belonging to each region are provided as supplementary material. The shape model has then been used to assess inhomogeneity of nucleus surface morphology within individual regions. Several regions show diverse morphology. We propose sub-division of these regions into clearly identifiable units (sub-regions) and a comprehensive table is provided. The surface areas of each sub-region have been computed and statistics based on grouping of unit types are provided. The roughness of each region is also provided in a quantitative manner using a technique derived from computer graphics applications. The quantitative method supports the sub-region definition by showing that differences between sub-regions can be numerically justified

    Surface changes on comet 67P/Churyumov-Gerasimenko suggest a more active past

    Get PDF
    The Rosetta spacecraft spent ~2 years orbiting comet 67P/Churyumov-Gerasimenko, most of it at distances that allowed surface characterization and monitoring at submeter scales. From December 2014 to June 2016, numerous localized changes were observed, which we attribute to cometary-specific weathering, erosion, and transient events driven by exposure to sunlight and other processes. While the localized changes suggest compositional or physical heterogeneity, their scale has not resulted in substantial alterations to the comet’s landscape. This suggests that most of the major landforms were created early in the comet’s current orbital configuration. They may even date from earlier if the comet had a larger volatile inventory, particularly of CO or CO2 ices, or contained amorphous ice, which could have triggered activity at greater distances from the Sun
    • 

    corecore