585 research outputs found
New approach to the conceptual design of STUMM: A module dedicated to the monitoring of neutron and gamma radiation fields generated in IFMIF-DONES
International Fusion Materials Irradiation Facility — DEMOsingle bondOriented Neutron Source (IFMIF-DONES) is a planned powerful neutron source, which will generate an intense flux of neutrons (up to ∼1015n/s/cm2) with a fusion-relevant energy spectrum. It will be an accelerator source based on deuteron beam - lithium target reactions. The engineering design of IFMIF-DONES is elaborated in the frame of the Early Neutron Source work package of the EUROfusion consortium. The facility will be dedicated to the irradiation of suitable structural materials planned for the construction of future fusion reactors such as DEMO (Demonstration Fusion Power Plant). Start-up Monitoring Module (STUMM) is designed to monitor radiation and thermal conditions during the commissioning phase of IFMIF-DONES, characterize the produced neutron flux and validate neutronic modeling of the facility. The conceptual design of STUMM is prepared by a team of physicists and engineers from the Institute of Nuclear Physics Polish Academy of Sciences (IFJ PAN) and the National Centre for Nuclear Research (NCBJ), Poland. This paper presents the concept of STUMM, the proposed design of the module, and selected measuring systems
Low-energy cross section of the 7Be(p,g)8B solar fusion reaction from Coulomb dissociation of 8B
Final results from an exclusive measurement of the Coulomb breakup of 8B into
7Be+p at 254 A MeV are reported. Energy-differential Coulomb-breakup cross
sections are analyzed using a potential model of 8B and first-order
perturbation theory. The deduced astrophysical S_17 factors are in good
agreement with the most recent direct 7Be(p,gamma)8B measurements and follow
closely the energy dependence predicted by the cluster-model description of 8B
by Descouvemont. We extract a zero-energy S_17 factor of 20.6 +- 0.8 (stat) +-
1.2 (syst) eV b.Comment: 14 pages including 16 figures, LaTeX, accepted for publication in
Physical Review C. Minor changes in text and layou
Core-coupled states and split proton-neutron quasi-particle multiplets in 122-126Ag
Neutron-rich silver isotopes were populated in the fragmentation of a 136Xe
beam and the relativistic fission of 238U. The fragments were mass analyzed
with the GSI Fragment separator and subsequently implanted into a passive
stopper. Isomeric transitions were detected by 105 HPGe detectors. Eight
isomeric states were observed in 122-126Ag nuclei. The level schemes of
122,123,125Ag were revised and extended with isomeric transitions being
observed for the first time. The excited states in the odd-mass silver isotopes
are interpreted as core-coupled states. The isomeric states in the even-mass
silver isotopes are discussed in the framework of the proton-neutron split
multiplets. The results of shell-model calculations, performed for the most
neutron-rich silver nuclei are compared to the experimental data
Evidence for reduced collectivity around the neutron mid-shell in the stable even-mass Sn isotopes from new lifetime measurements
Precise measurements of the lifetimes of the first excited 2+ states in the stable even-A Sn isotopes 112-124Sn have been performed using the Doppler shift attenuation technique. For the isotopes 112Sn, 114Sn and 116Sn the E2 transition strengths deduced from the measured lifetimes are in disagreement with the previously reported values and indicate a shallow minimum at N=66. The observed deviation from a maximum at mid-shell is attributed to the obstructive effect of the s1/2 neutron orbital in generating collectivity when near the Fermi level. © 2010 Elsevier B.V.Financial support from the Spanish Ministerio de Ciencia e Innovaci on under contracts FPA2007-66069, FPA2009-13377-C02-01 and FPA2009-13377-C02-02, the Spanish Consolider-Ingenio 2010 Programme CPAN (CSD2007-00042) and the Australian Re- search Council Discovery Scheme, grant no. DP0773273Peer Reviewe
The High-Acceptance Dielectron Spectrometer HADES
HADES is a versatile magnetic spectrometer aimed at studying dielectron
production in pion, proton and heavy-ion induced collisions. Its main features
include a ring imaging gas Cherenkov detector for electron-hadron
discrimination, a tracking system consisting of a set of 6 superconducting
coils producing a toroidal field and drift chambers and a multiplicity and
electron trigger array for additional electron-hadron discrimination and event
characterization. A two-stage trigger system enhances events containing
electrons. The physics program is focused on the investigation of hadron
properties in nuclei and in the hot and dense hadronic matter. The detector
system is characterized by an 85% azimuthal coverage over a polar angle
interval from 18 to 85 degree, a single electron efficiency of 50% and a vector
meson mass resolution of 2.5%. Identification of pions, kaons and protons is
achieved combining time-of-flight and energy loss measurements over a large
momentum range. This paper describes the main features and the performance of
the detector system
- …