88 research outputs found

    One-sided jet at milliarcsecond scales in LSI+61303

    Get PDF
    We present Very Long Baseline Interferometry (VLBI) observations of the high mass X-ray binary LSI+61303, carried out with the European VLBI Network (EVN). Over the 11 hour observing run, performed 10 days after a radio outburst, the radio source showed a constant flux density, which allowed sensitive imaging of the emission distribution. The structure in the map shows a clear extension to the southeast. Comparing our data with previous VLBI observations we interpret the extension as a collimated radio jet as found in several other X-ray binaries. Assuming that the structure is the result of an expansion that started at the onset of the outburst, we derive an apparent expansion velocity of 0.003 c, which, in the context of Doppler boosting, corresponds to an intrinsic velocity of at least 0.4 c for an ejection close to the line of sight. From the apparent velocity in all available epochs we are able to establish variations in the ejection angle which imply a precessing accretion disk. Finally we point out that LSI+61303, like SS433 and Cygnus X-1, shows evidence for an emission region almost orthogonal to the relativistic jet.Comment: 7 pages, 4 figures, LaTeX, uses aa.cls. Accepted for publication in A&

    Chandra Observations of the Gamma-ray Binary LSI+61303: Extended X-ray Structure?

    Get PDF
    We present a 50 ks observation of the gamma-ray binary LSI+61303 carried out with the ACIS-I array aboard the Chandra X-ray Observatory. This is the highest resolution X-ray observation of the source conducted so far. Possible evidence of an extended structure at a distance between 5 and 12 arcsec towards the North of LSI+61303 have been found at a significance level of 3.2 sigma. The asymmetry of the extended emission excludes an interpretation in the context of a dust-scattered halo, suggesting an intrinsic nature. On the other hand, while the obtained source flux, of F_{0.3-10 keV}=7.1^{+1.8}_{-1.4} x 10^{-12} ergs/cm^2/s, and hydrogen column density, N_{H}=0.70+/-0.06 x 10^{22} cm^{-2}, are compatible with previous results, the photon index Gamma=1.25+/-0.09 is the hardest ever found. In light of these new results, we briefly discuss the physics behind the X-ray emission, the location of the emitter, and the possible origin of the extended emission ~0.1 pc away from LSI+61303.Comment: 4 pages, 3 figures. Accepted for publication in ApJ Letter

    A One-sided, Highly Relativistic Jet from Cygnus X-3

    Get PDF
    Very Long Baseline Array images of the X-ray binary, Cygnus X-3, were obtained 2, 4 and 7 days after the peak of a 10 Jy flare on 4 February 1997. The first two images show a curved one-sided jet, the third a scatter-broadened disc, presumably at the position of the core. The jet curvature changes from the first to the second epoch, which strongly suggests a precessing jet. The ratio of the flux density in the approaching to that in the (undetected) receding jet is > 330; if this asymmetry is due to Doppler boosting, the implied jet speed is > 0.81c. Precessing jet model fits, together with the assumptions that the jet is intrinsically symmetric and was ejected during or after the major flare, yield the following constraints: the jet inclination to the line of sight must be < 14 degrees; the cone opening angle must be < 12 degrees; and the precession period must be > 60 days.Comment: 12 pages 7 figures, accepted by Ap

    Chemoenzymatic Probes for Detecting and Imaging Fucose-α(1-2)-galactose Glycan Biomarkers

    Get PDF
    The disaccharide motif fucose-α(1-2)-galactose (Fucα(1-2)Gal) is involved in many important physiological processes, such as learning and memory, inflammation, asthma, and tumorigenesis. However, the size and structural complexity of Fucα(1-2)Gal-containing glycans have posed a significant challenge to their detection. We report a new chemoenzymatic strategy for the rapid, sensitive detection of Fucα(1-2)Gal glycans. We demonstrate that the approach is highly selective for the Fucα(1-2)Gal motif, detects a variety of complex glycans and glycoproteins, and can be used to profile the relative abundance of the motif on live cells, discriminating malignant from normal cells. This approach represents a new potential strategy for biomarker detection and expands the technologies available for understanding the roles of this important class of carbohydrates in physiology and disease

    Radio continuum and near-infrared study of the MGRO J2019+37 region

    Get PDF
    (abridged) MGRO J2019+37 is an unidentified extended source of VHE gamma-rays originally reported by the Milagro Collaboration as the brightest TeV source in the Cygnus region. Its extended emission could be powered by either a single or several sources. The GeV pulsar AGL J2020.5+3653, discovered by AGILE and associated with PSR J2021+3651, could contribute to the emission from MGRO J2019+37, although extrapolation of the GeV spectrum does not explain the detected multi-TeV flux. Our aim is to identify radio and NIR sources in the field of the extended TeV source MGRO J2019+37, and study potential counterparts that could contribute to its emission. We surveyed a region of about 6 square degrees with the Giant Metrewave Radio Telescope (GMRT) at the frequency 610 MHz. We also observed the central square degree of this survey in the NIR Ks-band using the 3.5 m telescope in Calar Alto. Archival X-ray observations of some specific fields are included. VLBI observations of an interesting radio source were performed. We explored possible scenarios to produce the multi-TeV emission from MGRO J2019+37 and studied which of the sources could be the main particle accelerator. We present a catalogue of 362 radio sources detected with the GMRT in the field of MGRO J2019+37, and the results of a cross-correlation of this catalog with one obtained at NIR wavelengths, as well as with available X-ray observations of the region. Some peculiar sources inside the ~1 degree uncertainty region of the TeV emission from MGRO J2019+37 are discussed in detail, including the pulsar PSR J2021+3651 and its pulsar wind nebula PWN G75.2+0.1, two new radio-jet sources, the HII region Sh 2-104 containing two star clusters, and the radio source NVSS J202032+363158.Comment: 10 pages, 6 figures, 2 tables, accepted for publication in Astronomy and Astrophysic

    Radio continuum and near-infrared study of the MGRO J2019+37 region

    Get PDF
    (abridged) MGRO J2019+37 is an unidentified extended source of VHE gamma-rays originally reported by the Milagro Collaboration as the brightest TeV source in the Cygnus region. Its extended emission could be powered by either a single or several sources. The GeV pulsar AGL J2020.5+3653, discovered by AGILE and associated with PSR J2021+3651, could contribute to the emission from MGRO J2019+37, although extrapolation of the GeV spectrum does not explain the detected multi-TeV flux. Our aim is to identify radio and NIR sources in the field of the extended TeV source MGRO J2019+37, and study potential counterparts that could contribute to its emission. We surveyed a region of about 6 square degrees with the Giant Metrewave Radio Telescope (GMRT) at the frequency 610 MHz. We also observed the central square degree of this survey in the NIR Ks-band using the 3.5 m telescope in Calar Alto. Archival X-ray observations of some specific fields are included. VLBI observations of an interesting radio source were performed. We explored possible scenarios to produce the multi-TeV emission from MGRO J2019+37 and studied which of the sources could be the main particle accelerator. We present a catalogue of 362 radio sources detected with the GMRT in the field of MGRO J2019+37, and the results of a cross-correlation of this catalog with one obtained at NIR wavelengths, as well as with available X-ray observations of the region. Some peculiar sources inside the ~1 degree uncertainty region of the TeV emission from MGRO J2019+37 are discussed in detail, including the pulsar PSR J2021+3651 and its pulsar wind nebula PWN G75.2+0.1, two new radio-jet sources, the HII region Sh 2-104 containing two star clusters, and the radio source NVSS J202032+363158.Comment: 10 pages, 6 figures, 2 tables, accepted for publication in Astronomy and Astrophysic

    Low-frequency radio observations of the MGRO J2019+37 Complex

    Get PDF
    We present here a preliminary account of the results of a wide-field mosaic obtained at 610 MHz (49 cm) with the Giant Metre-wave Radio Telescope (GMRT) in India covering the field of the unidentified TeV source MGRO J2019+37. A catalogue of all radio sources detected has been created including both compact and extended objects. Their observational properties are described and presented. We draw the attention to some peculiar objects inside the ˜1° uncertainty region of the TeV emission. The possible connection of these sources with the MILAGRO γ-ray emission will be assessed in future work.Fil: Sánchez Sutil, Juan R. . Universidad de Jaén; EspañaFil: Paredes, Josep M.. Universitat de Barcelona. Departament d’Astronomia i Meteorologia and Institut de Ciències del Cosmos; EspañaFil: Moldón, J.. Universitat de Barcelona. Departament d’Astronomia i Meteorologia and Institut de Ciències del Cosmos; EspañaFil: Zabalza, V.. Universitat de Barcelona. Departament d’Astronomia i Meteorologia and Institut de Ciències del Cosmos; EspañaFil: Bordas, P.. Universitat de Barcelona. Departament d’Astronomia i Meteorologia and Institut de Ciències del Cosmos; EspañaFil: Ribó, M.. Universitat de Barcelona. Departament d’Astronomia i Meteorologia and Institut de Ciències del Cosmos; EspañaFil: Martí, Josep. Universidad de Jaén; EspañaFil: Muñoz Arjonilla, Alvaro J.. Universidad de Jaén; EspañaFil: Luque Escamilla, Pedro L.. Universidad de Jaén; EspañaFil: Ishwara Chandra, C. H.. NCRA. TIFR; IndiaFil: Peracaula, Marta. Universidad de Girona; EspañaFil: Bosch Ramon, Valenti. Max Planck Institut Fur Kernphysik, Heidelberg; AlemaniaFil: Romero, Gustavo Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto Argentino de Radioastronomia (i); Argentin

    Radio continuum and near-infrared study of the MGRO J2019+37 region

    Get PDF
    Context.MGRO J2019+37 is an unidentified extended source of very high energy gamma-rays originally reported by the Milagro Collaboration as the brightest TeV source in the Cygnus region. Its extended emission could be powered by either a single or several sources. The GeV pulsar AGL J2020.5+3653, discovered by AGILE and associated with PSR J2021+3651, could contribute to the emission from MGRO J2019+37. Aims. Our aim is to identify radio and near-infrared sources in the field of the extended TeV source MGRO J2019+37, and study potential counterparts to explain its emission. Methods. We surveyed a region of about 6 square degrees with the Giant Metrewave Radio Telescope (GMRT) at the frequency 610 MHz. We also observed the central square degree of this survey in the near-infrared Ks-band using the 3.5 m telescope in Calar Alto. Archival X-ray observations of some specific fields are included. VLBI observations of an interesting radio source were performed. We explored possible scenarios to produce the multi-TeV emission from MGRO J2019+37 and studied which of the sources could be the main particle accelerator. Results. We present a catalogue of 362 radio sources detected with the GMRT in the field of MGRO J2019+37, and the results of a cross-correlation of this catalog with one obtained at near-infrared wavelengths, which contains ∼3 × 105 sources, as well as with available X-ray observations of the region. Some peculiar sources inside the ∼1° uncertainty region of the TeV emission from MGRO J2019+37 are discussed in detail, including the pulsar PSR J2021+3651 and its pulsar wind nebula PWN G75.2+0.1, two new radio-jet sources, the Hii region Sh 2-104 containing two star clusters, and the radio source NVSS J202032+363158. We also find that the hadronic scenario is the most likely in case of a single accelerator, and discuss the possible contribution from the sources mentioned above. Conclusions. Although the radio and GeV pulsar PSR J2021+3651 / AGL J2020.5+3653 and its associated pulsar wind nebula PWN G75.2+0.1 can contribute to the emission from MGRO J2019+37, extrapolation of the GeV spectrum does not explain the detected multi-TeV flux. Other sources discussed here could contribute to the emission of the Milagro source.Instituto Argentino de RadioastronomíaFacultad de Ciencias Astronómicas y Geofísica

    Linkage Specific Fucosylation of Alpha-1-Antitrypsin in Liver Cirrhosis and Cancer Patients: Implications for a Biomarker of Hepatocellular Carcinoma

    Get PDF
    We previously reported increased levels of protein-linked fucosylation with the development of liver cancer and identified many of the proteins containing the altered glycan structures. One such protein is alpha-1-antitrypsin (A1AT). To advance these studies, we performed N-linked glycan analysis on the five major isoforms of A1AT and completed a comprehensive study of the glycosylation of A1AT found in healthy controls, patients with hepatitis C- (HCV) induced liver cirrhosis, and in patients infected with HCV with a diagnosis of hepatocellular carcinoma (HCC).Patients with liver cirrhosis and liver cancer had increased levels of triantennary glycan-containing outer arm (alpha-1,3) fucosylation. Increases in core (alpha-1,6) fucosylation were observed only on A1AT from patients with cancer. We performed a lectin fluorophore-linked immunosorbent assay using Aleuria Aurantia lectin (AAL), specific for core and outer arm fucosylation in over 400 patients with liver disease. AAL-reactive A1AT was able to detect HCC with a sensitivity of 70% and a specificity of 86%, which was greater than that observed with the current marker of HCC, alpha-fetoprotein. Glycosylation analysis of the false positives was performed; results indicated that these patients had increases in outer arm fucosylation but not in core fucosylation, suggesting that core fucosylation is cancer specific.This report details the stepwise change in the glycosylation of A1AT with the progression from liver cirrhosis to cancer and identifies core fucosylation on A1AT as an HCC specific modification

    Circulating Microbial Products and Acute Phase Proteins as Markers of Pathogenesis in Lymphatic Filarial Disease

    Get PDF
    Lymphatic filariasis can be associated with development of serious pathology in the form of lymphedema, hydrocele, and elephantiasis in a subset of infected patients. Dysregulated host inflammatory responses leading to systemic immune activation are thought to play a central role in filarial disease pathogenesis. We measured the plasma levels of microbial translocation markers, acute phase proteins, and inflammatory cytokines in individuals with chronic filarial pathology with (CP Ag+) or without (CP Ag−) active infection; with clinically asymptomatic infections (INF); and in those without infection (endemic normal [EN]). Comparisons between the two actively infected groups (CP Ag+ compared to INF) and those without active infection (CP Ag− compared to EN) were used preliminarily to identify markers of pathogenesis. Thereafter, we tested for group effects among all the four groups using linear models on the log transformed responses of the markers. Our data suggest that circulating levels of microbial translocation products (lipopolysaccharide and LPS-binding protein), acute phase proteins (haptoglobin and serum amyloid protein-A), and inflammatory cytokines (IL-1β, IL-12, and TNF-α) are associated with pathogenesis of disease in lymphatic filarial infection and implicate an important role for circulating microbial products and acute phase proteins
    • …
    corecore