10 research outputs found

    Lack of Cetuximab induced skin toxicity in a previously irradiated field: case report and review of the literature

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Mutation, amplification or dysregulation of the EGFR family leads to uncontrolled division and predisposes to cancer. Inhibiting the EGFR represents a form of targeted cancer therapy.</p> <p>Case report</p> <p>We report the case of 79 year old gentlemen with a history of skin cancer involving the left ear who had radiation and surgical excision. He had presented with recurrent lymph node in the left upper neck. We treated him with radiation therapy concurrently with Cetuximab. He developed a skin rash over the face and neck area two weeks after starting Cetuximab, which however spared the previously irradiated area.</p> <p>Conclusion</p> <p>The etiology underlying the sparing of the previously irradiated skin maybe due to either decrease in the population of EGFR expressing cells or decrease in the EGFR expression.</p> <p>We raised the question that "Is it justifiable to use EGFR inhibitors for patients having recurrence in the previously irradiated field?" We may need further research to answer this question which may guide the physicians in choosing appropriate drug in this scenario.</p

    Predicting the F(ab)-mediated effect of monoclonal antibodies in vivo by combining cell-level kinetic and pharmacokinetic modelling

    Get PDF
    Cell-level kinetic models for therapeutically relevant processes increasingly benefit the early stages of drug development. Later stages of the drug development processes, however, rely on pharmacokinetic compartment models while cell-level dynamics are typically neglected. We here present a systematic approach to integrate cell-level kinetic models and pharmacokinetic compartment models. Incorporating target dynamics into pharmacokinetic models is especially useful for the development of therapeutic antibodies because their effect and pharmacokinetics are inherently interdependent. The approach is illustrated by analysing the F(ab)-mediated inhibitory effect of therapeutic antibodies targeting the epidermal growth factor receptor. We build a multi-level model for anti-EGFR antibodies by combining a systems biology model with in vitro determined parameters and a pharmacokinetic model based on in vivo pharmacokinetic data. Using this model, we investigated in silico the impact of biochemical properties of anti-EGFR antibodies on their F(ab)-mediated inhibitory effect. The multi-level model suggests that the F(ab)-mediated inhibitory effect saturates with increasing drug-receptor affinity, thereby limiting the impact of increasing antibody affinity on improving the effect. This indicates that observed differences in the therapeutic effects of high affinity antibodies in the market and in clinical development may result mainly from Fc-mediated indirect mechanisms such as antibody-dependent cell cytotoxicity

    Beyond Wavy Hairs: The Epidermal Growth Factor Receptor and Its Ligands in Skin Biology and Pathology

    No full text
    The epidermal growth factor receptor (EGFR) network, including its seven ligands and four related receptors, represents one of the most complex signaling systems in biology. In many tissues, including the skin and its appendages (notoriously the hair follicles), its correct function is necessary for proper development and tissue homeostasis, and its deregulation rapidly results in defects in cellular proliferation and differentiation. The consequences are impaired wound healing, development of psoriasis-like lesions, structural and functional defects of the hair follicles, and tumorigenesis. In addition to in vitro experiments and data from clinical studies, several genetically modified mouse models displaying alterations in the interfollicular skin and hair follicles attributable to mutations in components of the EGFR system have been reported. These animals, in many cases representing bona fide models of known human diseases, have been seminal in the study of the role of EGFR and its ligands in the skin and its appendages. In this review, we take the multiple phenotypes of these animal models as a basis to summarize and discuss the effects elicited by members of the EGFR system in diverse aspects of skin biology and pathology, including cellular proliferation and differentiation, wound healing, hair follicle morphogenesis, and tumorigenesis

    Current Status of Platinum-Based Antitumor Drugs

    No full text
    corecore