135 research outputs found

    Theoretical–Experimental Study of the Action of Trace Amounts of Formaldehyde, Propionaldehyde, and Butyraldehyde as Inhibitors of the Ziegler–Natta Catalyst and the Synthesis of an Ethylene–Propylene Copolymer

    Get PDF
    The copolymer synthesis process can be affected by failures in the production process or by contaminating compounds such as ketones, thiols, and gases, among others. These impurities act as an inhibiting agent of the Ziegler–Natta (ZN) catalyst affecting its productivity and disturbing the polymerization reaction. In this work, the effect of formaldehyde, propionaldehyde,and butyraldehyde on the ZN catalyst and the way in which it affects the final properties of the ethylene-propylene copolymer is presented by analyzing 30 samples with different concentrations of the mentioned aldehydes along with three control samples. It was determined that the presence of formaldehyde 26 ppm, propionaldehyde 65.2 ppm, and butyraldehyde 181.2 ppm considerably affect the productivity levels of the ZN catalyst; this effect increases as the concentration of aldehydes is higher in the process; likewise, these impurities affect the properties of the final product, such as the fluidity index (MFI), thermogravimetric analysis (TGA), bending, tension, and impact, which leads to a polymer with low-quality standards and less resistance to breakage. The computational analysis showed that the complexes formed by formaldehyde, propionaldehyde, and butyraldehyde with the active center of the catalyst are more stable than those obtained by the ethylene-Ti and propylene-Ti complexes, presenting values of −40.5, −47.22, −47.5, −5.2 and −1.3 kcal mol−1 respectively

    Prompt dipole radiation in fusion reactions

    Get PDF
    The prompt gamma ray emission was investigated in the 16A MeV energy region by means of the 36,40Ar+96,92Zr fusion reactions leading to a compound nucleus in the vicinity of 132Ce. We show that the prompt radiation, which appears to be still effective at such a high beam energy, has an angular distribution pattern consistent with a dipole oscillation along the symmetry axis of the dinuclear system. The data are compared with calculations based on a collective bremsstrahlung analysis of the reaction dynamics

    Physical and Antimicrobial Properties of Compression-Molded Cassava Starch-Chitosan Films for Meat Preservation

    Full text link
    [EN] Cassava starch-chitosan films were obtained by melt bending and compression molding, using glycerol and polyethylene glycol as plasticizers. Both the starch/chitosan and the polymer/plasticizer ratios were varied in order to analyze their effect on the physical properties of the films. Additionally, the antimicrobial activity of 70:30 polymer:plasticizer films was tested in cold-stored pork meat slices as affected by chitosan content. All film components were thermally stable up to 200 A degrees C, which guaranteed their thermostability during film processing. Starch and chitosan had limited miscibility by melt blending, which resulted in heterogeneous film microstructure. Polyethylene glycol partially crystallized in the films, to a greater extent as the chitosan ratio increased, which limited its plasticizing effect. The films with the highest plasticizer ratio were more permeable to water vapor, less rigid, and less resistant to break. The variation in the chitosan content did not have a significant effect on water vapor permeability. As the chitosan proportion increased, the films became less stretchable, more rigid, and more resistant to break, with a more saturated yellowish color. The incorporation of the highest amount of chitosan in the films led to the reduction in coliforms and total aerobic counts of cold-stored pork meat slices, thus extending their shelf-life.The authors acknowledge the financial support provided by the Spanish Ministerio de Economia y Competividad (Projects AGL2013-42989-R and AGL2016-76699-R). Author Cristina Valencia-Sullca thanks the Peruvian Grant National Program (PRONABEC Grant).Valencia-Sullca, CE.; AtarĂ©s Huerta, LM.; Vargas, M.; Chiralt, A. (2018). Physical and Antimicrobial Properties of Compression-Molded Cassava Starch-Chitosan Films for Meat Preservation. Food and Bioprocess Technology. 11(7):1339-1349. https://doi.org/10.1007/s11947-018-2094-5S13391349117Alves, V. D., Mali, S., Beleia, A., & Grossmann, M. V. (2007). Effect of glycerol and amylose enrichment on cassava starch film properties. Journal of Food Engineering, 78(3), 941–946.ASTM (1995). Standard test methods for water vapour transmission of materials. In: Standards designations: E96-95. Annual book of ASTM standards (pp. 406-413). Philadelphia, PA: American Society for Testing and Materials.ASTM (1999). Standard test method for specular gloss. In: Designation (D523). Annual book of ASTM standards, Vol. 06.01. Philadelphia, PA: American Society for Testing and Materials.ASTM (2001). Standard test method for tensile properties of thin plastic sheeting. In: Standard D882 annual book of American standard testing methods. Philadelphia, PA: American Society for Testing and Materials.AtarĂ©s, L., Bonilla, J., & Chiralt, A. (2010). Characterization of sodium caseinate-based edible films incorporated with cinnamon or ginger essential oils. Journal of Food Engineering, 100(4), 678–687.Bonilla, J., AtarĂ©s, L., Vargas, M., & Chiralt, A. (2013). Properties of wheat starch film-forming dispersions and films as affected by chitosan addition. Journal of Food Engineering, 114(3), 303–312.Bonilla, J., Fortunati, E., AtarĂ©s, L., Chiralt, A., & Kenny, J. (2014). Physical, structural and antimicrobial properties of poly vinyl alcohol-chitosan biodegradable films. Food Hydrocolloids, 35, 463–470.Bourtoom, T., & Chinnan, M. S. (2008). Preparation and properties of rice starch–chitosan blend biodegradable film. LWT-Food Science and Technology, 41(9), 1633–1641.Cano, A., JimĂ©nez, A., ChĂĄfer, M., GonzĂĄlez-MartĂ­nez, C., & Chiralt, A. (2014). Effect of amylose: amylopectin ratio and rice bran addition on starch films properties. Carbohydrate Polymers, 111(0), 543–555.Carvalho, A. J. F. (2008). Starch: Major sources, properties and applications as thermoplastic materials. In M. N. Belgacem & A. Gandini (Eds.), Monomers, polymers and composites from renewable resources. Amsterdam: Elsevier.Chillo, S., Flores, S., Mastromatteo, M., Conte, A., Gerschenson, L., & Del Nobile, M. A. (2008). Influence of glycerol and chitosan on tapioca starch-based edible film properties. Journal of Food Engineering, 88(2), 159–168.Commission Regulation, 2005 (EC) No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. In Official Journal of the European Union pp 338/1–338/26.Da RĂłz, A., Carvalho, A., Gandini, A., & Curvelo, A. (2006). The effect of plasticizers on thermoplastic starch compositions obtained by melt processing. Carbohydrate Polymers, 63(3), 417–424.Dang, K., & Yoksan, R. (2015). Development of thermoplastic starch blown film by incorporating plasticized chitosan. Carbohydrate Polymers, 115, 575–581.Dou, B., Dupont, V., Williams, P. T., Chen, H., & Ding, Y. (2009). Thermogravimetric kinetics of crude glycerol. Bioresource Technology, 100(9), 2613–2620.Fang, J., Fawler, P., Eserig, C., GonzĂĄlez, R., Costa, J., & Chamudis, L. (2005). Development of biodegradable laminate films derived from naturally occurring carbohydrate polymers. Carbohydrate Polymers, 60(1), 39–42.Hutchings, J. B. (1999). Food color and appearance (2nd ed.). Gaithersburg, Maryland, USA: Aspen Publishers, Inc..JimĂ©nez, A., Fabra, M. J., Talens, P., & Chiralt, A. (2012a). Edible and biodegradable starch films: A review. Food Bioprocessing Technology, 5(6), 2058–2076.JimĂ©nez, A., Fabra, M. J., Talens, P., & Chiralt, A. (2012b). Effect of re-crystallization on tensile, optical and water vapour barrier properties of corn starch films containing fatty acids. Food Hydrocolloids, 26(1), 302–310.LĂłpez, O., Garcia, A., Villar, M., Gentili, A., Rodriguez, M., & Albertengo, L. (2014). Thermo-compression of biodegradable thermoplastic corn starch films containing chitin and chitosan. LWT-Food Science and Technology, 57(106), 106–1515.Mali, S., Grossmann, M. V. E., GarcĂ­a, M. A., Martino, M. N., & Zaritsky, N. E. (2006). Effects of controlled storage on thermal, mechanical and barrier properties of plasticized films from different starch sources. Journal of Food Engineering, 75(4), 453–460.Mendes, J. F., Paschoalin, R. T., Carmona, V. B., Sena Neto, A. R. A., Marques, C. P., Marconcini, J. M., Mattoso, L. H. C., Medeiros, E. S., & Oliveira, J. E. (2016). Biodegradable polymer blends based on corn starch and thermoplastic chitosan processed by extrusion. Carbohydrate Polymers, 137, 452–458.Ortega-Toro, R., JimĂ©nez, A., Talens, P., & Chiralt, A. (2014). Properties of starch–hydroxypropyl methylcellulose based films obtained by compression molding. Carbohydrate Polymers, 109, 155–165.Ortega-Toro, R., Morey, I., Talens, P., & Chiralt, A. (2015). Active bilayer films of thermoplastic starch and polycaprolactone obtained by compression molding. Carbohydrate Polymers, 127, 282–290.Pelissari, F., Grossmann, M., Yamashita, F., & Pineda, E. (2009). Antimicrobial, mechanical and barrier properties of cassava starch-chitosan films incorporated with oregano essential oil. Journal of Agricultural and Food Chemistry, 57(16), 7499–7504.Pelissari, F. M., Yamashita, F., GarcĂ­a, M. A., Martino, M. N., Zaritzky, N. E., & Grossmann, M. V. E. (2012). Constrained mixture design applied to the development of cassava starch-chitosan blown films. Journal of Food Engineering, 108(2), 262–267.Song, R., Xue, R., He, L. H., Liu, Y., & Xiao, Q. L. (2008). The structure and properties of chitosan/polyethylene glycol/silica ternary hybrid organic-inorganic films. Chinese Journal of Polymer Science, 26(05), 621–630.v.Su, J. F., Huang, Z., Yuan, X. Y., Wang, X. Y., & Lim, M. (2010). Structure and properties of carboxymethyl cellulose/soy protein isolate blend edible films crosslinked by Maillard reactions. Carbohydrate Polymers, 79(1), 145–153.Thunwall, M., Boldizar, A., & Rigdahl, M. (2006). Compression molding and tensile properties of thermoplastic potato starch materials. Biomacromolecules, 7(3), 981–986.TomĂ©, L., Fernandes, S., Sadocco, P., Causio, J., Silvertre, A., Neto, P., & Freire, C. (2012). Antibacterial thermoplastic starch- chitosan based materials prepared by melt-mixing. BioResources, 7(3), 3398–3409.Villalobos, R., Chanona, J., HernĂĄndez, P., GutiĂ©rrez, G., & Chiralt, A. (2005). Gloss and transparency of hydroxypropyl methylcellulose films containing surfactants as affected by their microstructure. Food Hydrocolloids, 19(1), 53–61.Xu, Y. X., Kim, K. M., Hanna, M. A., & Nag, D. (2005). Chitosan–starch composite film: Preparation and characterization. Industrial Crops and Products, 21(2), 185–192.Yang, L., & Paulson, A. T. (2000). Mechanical and water vapour barrier properties of edible gellan. Food Research International, 33(7), 563–570

    Carglumic acid enhances rapid ammonia detoxification in classical organic acidurias with a favourable risk-benefit profile: A retrospective observational study

    Get PDF
    BACKGROUND: Isovaleric aciduria (IVA), propionic aciduria (PA) and methylmalonic aciduria (MMA) are inherited organic acidurias (OAs) in which impaired organic acid metabolism induces hyperammonaemia arising partly from secondary deficiency of N-acetylglutamate (NAG) synthase. Rapid reduction in plasma ammonia is required to prevent neurological complications. This retrospective, multicentre, open-label, uncontrolled, phase IIIb study evaluated the efficacy and safety of carglumic acid, a synthetic structural analogue of NAG, for treating hyperammonaemia during OA decompensation. METHODS: Eligible patients had confirmed OA and hyperammonaemia (plasma NH3 > 60 ÎŒmol/L) in ≄1 decompensation episode treated with carglumic acid (dose discretionary, mean (SD) first dose 96.3 (73.8) mg/kg). The primary outcome was change in plasma ammonia from baseline to endpoint (last available ammonia measurement at ≀18 hours after the last carglumic acid administration, or on Day 15) for each episode. Secondary outcomes included clinical response and safety. RESULTS: The efficacy population (received ≄1 dose of study drug and had post-baseline measurements) comprised 41 patients (MMA: 21, PA: 16, IVA: 4) with 48 decompensation episodes (MMA: 25, PA: 19, IVA: 4). Mean baseline plasma ammonia concentration was 468.3 (±365.3) ÎŒmol/L in neonates (29 episodes) and 171.3 (±75.7) ÎŒmol/L in non-neonates (19 episodes). At endpoint the mean plasma NH3 concentration was 60.7 (±36.5) ÎŒmol/L in neonates and 55.2 (±21.8) ÎŒmol/L in non-neonates. Median time to normalise ammonaemia was 38.4 hours in neonates vs 28.3 hours in non-neonates and was similar between OA subgroups (MMA: 37.5 hours, PA: 36.0 hours, IVA: 40.5 hours). Median time to ammonia normalisation was 1.5 and 1.6 days in patients receiving and not receiving concomitant scavenger therapy, respectively. Although patients receiving carglumic acid with scavengers had a greater reduction in plasma ammonia, the endpoint ammonia levels were similar with or without scavenger therapy. Clinical symptoms improved with therapy. Twenty-five of 57 patients in the safety population (67 episodes) experienced AEs, most of which were not drug-related. Overall, carglumic acid seems to have a good safety profile for treating hyperammonaemia during OA decompensation. CONCLUSION: Carglumic acid when used with or without ammonia scavengers, is an effective treatment for restoration of normal plasma ammonia concentrations in hyperammonaemic episodes in OA patients

    Enhancement of PLA-PVA surface adhesion in bilayer assemblies by PLA aminolisation

    Get PDF
    Data Availability: The raw/processed data required to reproduce these findings cannot be shared at this time due to legal or ethical reasons.Poly(lactic acid) (PLA) and poly(vinyl alcohol) (PVA) present complementary barrier properties, and their combination in multilayer assemblies (laminates) could provide materials with more effective barrier capacity for food packaging purposes. However, their low chemical affinity compromises adequate polymer adhesion. Surface free energy modification of thermo-processed PLA films through treatment with 1,6-hexanediamine was used to enhance adhesion with polar PVA aqueous solutions. Treatments of 1 and 3 min increased the polar component of the solid surface tension, while treatments above 10 min provoked a corrosive effect in the films structure. Extensibility analyses of PVA solutions loaded with carvacrol (15 wt.%) and different Tween 85 ratios on PLA-activated surfaces allowed the selection of the 1-min aminolysed surface for obtaining PLA-PVA bilayers, by casting PVA solutions on the PLA films. This study revealed that despite aminolisation enhancing the PLA surface affinity for aqueous PVA solutions, casting-obtained bilayers presented limited oxygen barrier effectiveness due to heterogeneous thickness of PVA layer in the laminates.The authors acknowledge the financial support provided by the Ministerio de Economia y Competitividad (MINECO) of Spain (project AGL2016-76699-R). The author A. Tampau thanks MINECO for the pre-doctoral research grant #BES-2014-068100.info:eu-repo/semantics/publishedVersio

    Integrative Analysis Reveals a Molecular Stratification of Systemic Autoimmune Diseases

    Get PDF
    Objective Clinical heterogeneity, a hallmark of systemic autoimmune diseases, impedes early diagnosis and effective treatment, issues that may be addressed if patients could be classified into groups defined by molecular pattern. This study was undertaken to identify molecular clusters for reclassifying systemic autoimmune diseases independently of clinical diagnosis. Methods Unsupervised clustering of integrated whole blood transcriptome and methylome cross-sectional data on 955 patients with 7 systemic autoimmune diseases and 267 healthy controls was undertaken. In addition, an inception cohort was prospectively followed up for 6 or 14 months to validate the results and analyze whether or not cluster assignment changed over time. Results Four clusters were identified and validated. Three were pathologic, representing “inflammatory,” “lymphoid,” and “interferon” patterns. Each included all diagnoses and was defined by genetic, clinical, serologic, and cellular features. A fourth cluster with no specific molecular pattern was associated with low disease activity and included healthy controls. A longitudinal and independent inception cohort showed a relapse–remission pattern, where patients remained in their pathologic cluster, moving only to the healthy one, thus showing that the molecular clusters remained stable over time and that single pathogenic molecular signatures characterized each individual patient. Conclusion Patients with systemic autoimmune diseases can be jointly stratified into 3 stable disease clusters with specific molecular patterns differentiating different molecular disease mechanisms. These results have important implications for future clinical trials and the study of nonresponse to therapy, marking a paradigm shift in our view of systemic autoimmune diseases

    Mendelian Randomization Analysis of the Relationship Between Native American Ancestry and Gallbladder Cancer Risk

    Full text link
    Background A strong association between the proportion of Native American ancestry and the risk of gallbladder cancer (GBC) has been reported in observational studies. Chileans show the highest incidence of GBC worldwide, and the Mapuche are the largest Native American people in Chile. We set out to investigate the causal association between Native American Mapuche ancestry and GBC risk, and the possible mediating effects of gallstone disease and body mass index (BMI) on this association. Methods Markers of Mapuche ancestry were selected based on the informativeness for assignment measure and then used as instrumental variables in two-sample mendelian randomization (MR) analyses and complementary sensitivity analyses. Result We found evidence of a causal effect of Mapuche ancestry on GBC risk (inverse variance-weighted (IVW) risk increase of 0.8% for every 1% increase in Mapuche ancestry proportion, 95% CI 0.4% to 1.2%, p = 6.6×10-5). Mapuche ancestry was also causally linked to gallstone disease (IVW risk increase of 3.6% per 1% increase in Mapuche proportion, 95% CI 3.1% to 4.0%, p = 1.0×10-59), suggesting a mediating effect of gallstones in the relationship between Mapuche ancestry and GBC. In contrast, the proportion of Mapuche ancestry showed a negative causal effect on BMI (IVW estimate -0.006 kg/m2 per 1% increase in Mapuche proportion, 95% CI -0.009 to -0.003, p = 4.4×10-5). Conclusions The results presented here may have significant implications for GBC prevention and are important for future admixture mapping studies. Given that the association between Mapuche ancestry and GBC risk previously noted in observational studies appears to be causal, primary and secondary prevention strategies that take into account the individual proportion of Mapuche ancestry could be particularly efficient

    International lower limb collaborative (INTELLECT) study: a multicentre, international retrospective audit of lower extremity open fractures

    Get PDF
    Trauma remains a major cause of mortality and disability across the world1, with a higher burden in developing nations2. Open lower extremity injuries are devastating events from a physical3, mental health4, and socioeconomic5 standpoint. The potential sequelae, including risk of chronic infection and amputation, can lead to delayed recovery and major disability6. This international study aimed to describe global disparities, timely intervention, guideline-directed care, and economic aspects of open lower limb injuries

    Assessment of plasma chitotriosidase activity, CCL18/PARC concentration and NP-C suspicion index in the diagnosis of Niemann-Pick disease type C: A prospective observational study

    Get PDF
    Background: Niemann-Pick disease type C (NP-C) is a rare, autosomal recessive neurodegenerative disease caused by mutations in either the NPC1 or NPC2 genes. The diagnosis of NP-C remains challenging due to the non-specific, heterogeneous nature of signs/symptoms. This study assessed the utility of plasma chitotriosidase (ChT) and Chemokine (C-C motif) ligand 18 (CCL18)/pulmonary and activation-regulated chemokine (PARC) in conjunction with the NP-C suspicion index (NP-C SI) for guiding confirmatory laboratory testing in patients with suspected NP-C. Methods: In a prospective observational cohort study, incorporating a retrospective determination of NP-C SI scores, two different diagnostic approaches were applied in two separate groups of unrelated patients from 51 Spanish medical centers (n = 118 in both groups). From Jan 2010 to Apr 2012 (Period 1), patients with =2 clinical signs/symptoms of NP-C were considered ''suspected NP-C'' cases, and NPC1/NPC2 sequencing, plasma chitotriosidase (ChT), CCL18/PARC and sphingomyelinase levels were assessed. Based on findings in Period 1, plasma ChT and CCL18/PARC, and NP-C SI prediction scores were determined in a second group of patients between May 2012 and Apr 2014 (Period 2), and NPC1 and NPC2 were sequenced only in those with elevated ChT and/or elevated CCL18/PARC and/or NP-C SI =70. Filipin staining and 7-ketocholesterol (7-KC) measurements were performed in all patients with NP-C gene mutations, where possible. Results: In total across Periods 1 and 2, 10/236 (4%) patients had a confirmed diagnosis o NP-C based on gene sequencing (5/118 4.2%] in each Period): all of these patients had two causal NPC1 mutations. Single mutant NPC1 alleles were detected in 8/236 (3%) patients, overall. Positive filipin staining results comprised three classical and five variant biochemical phenotypes. No NPC2 mutations were detected. All patients with NPC1 mutations had high ChT activity, high CCL18/PARC concentrations and/or NP-C SI scores =70. Plasma 7-KC was higher than control cut-off values in all patients with two NPC1 mutations, and in the majority of patients with single mutations. Family studies identified three further NP-C patients. Conclusion: This approach may be very useful for laboratories that do not have mass spectrometry facilities and therefore, they cannot use other NP-C biomarkers for diagnosis
    • 

    corecore