106 research outputs found

    The influence of CYP 2C19*2 polymorphism on platelet function testing during single antiplatelet treatment with clopidogrel

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Different platelet function tests can be used to evaluate the degree of achieved platelet inhibition in patients treated with clopidogrel. The presence of CYP 2C19*2 polymorphism can reduce the formation of the active metabolite of clopidogrel, resulting in less platelet inhibition.</p> <p>Patients and Methods</p> <p>Patients with symptomatic coronary artery disease, all on chronic single aspirin treatment were randomized to continue on aspirin or change to clopidogrel. In 219 randomly selected clopidogrel treated patients, platelet reactivity was evaluated by VASP-PRI determination and by use of VerifyNow P2Y12-PRU. The CYP 2C19*2 G/A polymorphism was further determined.</p> <p>Results</p> <p>The total frequency of clopidogrel resistance was 29.0% by VASP-PRI and 31.6% by VerifyNow-PRU. The number of patients being hetero- and homozygous combined for the CYP 2C19*2 polymorphism (GA/AA) was 64 (29%). Platelet reactivity was significantly higher in patients with the polymorphism compared to wild-type patients (GG). VASP-PRI was 50.9% (SD19) in patients having the polymorphism compared to 38.3% (SD21) in patients with the GG genotype (p = 0.001). Correspondingly, the mean PRU was 165 (SD67) compared to 124 (SD69) (p < 0.001). The frequency of clopidogrel resistance in patients with the polymorphism was 32% compared to 16% in wild-type patients when defined by VASP-PRI (p = 0.006). When defined by PRU (VerifyNow), the corresponding frequencies were 53% and 22% (p < 0.001).</p> <p>Conclusions</p> <p>Clopidogrel treated patients with the CYP 2C19*2 polymorphism have significantly increased platelet reactivity compared to patients with the wild-type, evaluated with the VASP determination, and even more pronounced with the VerifyNow P2Y12 method.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT00222261">NCT00222261</a></p

    Taurine: a potential marker of apoptosis in gliomas

    Get PDF
    New cancer therapies are being developed that trigger tumour apoptosis and an in vivo method of apoptotic detection and early treatment response would be of great value. Magnetic resonance spectroscopy (MRS) can determine the tumour biochemical profile in vivo, and we have investigated whether a specific spectroscopic signature exists for apoptosis in human astrocytomas. High-resolution magic angle spinning (HRMAS) 1H MRS provided detailed 1H spectra of brain tumour biopsies for direct correlation with histopathology. Metabolites, mobile lipids and macromolecules were quantified from presaturation HRMAS 1H spectra acquired from 41 biopsies of grades II (n=8), III (n=3) and IV (n=30) astrocytomas. Subsequently, TUNEL and H&E staining provided quantification of apoptosis, cell density and necrosis. Taurine was found to significantly correlate with apoptotic cell density (TUNEL) in both non-necrotic (R=0.727, P=0.003) and necrotic (R=0.626, P=0.0005) biopsies. However, the ca 2.8 p.p.m. polyunsaturated fatty acid peak, observed in other studies as a marker of apoptosis, correlated only in non-necrotic biopsies (R=0.705, P<0.005). We suggest that the taurine 1H MRS signal in astrocytomas may be a robust apoptotic biomarker that is independent of tumour necrotic status

    Use of 1H and 31P HRMAS to evaluate the relationship between quantitative alterations in metabolite concentrations and tissue features in human brain tumour biopsies

    Full text link
    [EN] Quantitative multinuclear high-resolution magic angle spinning (HRMAS) was performed in order to determine the tissue pH values of and the absolute metabolite concentrations in 33 samples of human brain tumour tissue. Metabolite concentrations were quantified by 1D 1 H and 31P HRMAS using the electronic reference to in vivo concentrations (ERETIC) synthetic signal. 1 H–1 H homonuclear and 1 H–31P heteronuclear correlation experiments enabled the direct assessment of the 1 H–31P spin systems for signals that suffered from overlapping in the 1D 1 H spectra, and linked the information present in the 1D 1 H and 31P spectra. Afterwards, the main histological features were determined, and high heterogeneity in the tumour content, necrotic content and nonaffected tissue content was observed. The metabolite profiles obtained by HRMAS showed characteristics typical of tumour tissues: rather low levels of energetic molecules and increased concentrations of protective metabolites. Nevertheless, these characteristics were more strongly correlated with the total amount of living tissue than with the tumour cell contents of the samples alone, which could indicate that the sampling conditions make a significant contribution aside from the effect of tumour development in vivo. The use of methylene diphosphonic acid as a chemical shift and concentration reference for the 31P HRMAS spectra of tissues presented important drawbacks due to its interaction with the tissue. Moreover, the pH data obtained from 31P HRMAS enabled us to establish a correlation between the pH and the distance between the N(CH3)3 signals of phosphocholine and choline in 1 H spectra of the tissue in these tumour samples.The authors acknowledge the SCSIE-University of Valencia Microscopy Service for the histological preparations. They also acknowledge Martial Piotto (Bruker BioSpin, France) for providing the ERETIC synthetic signal. Furthermore, they acknowledge financial support from the Spanish Government project SAF2007-6547, the Generalitat Valenciana project GVACOMP2009-303, and the E.U.'s VI Framework Programme via the project "Web accessible MR decision support system for brain tumor diagnosis and prognosis, incorporating in vivo and ex vivo genomic and metabolomic data" (FP6-2002-LSH 503094). CIBER-BBN is an initiative funded by the VI National R&D&D&i Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions, and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund.Esteve Moya, V.; Celda, B.; Martínez Bisbal, MC. (2012). Use of 1H and 31P HRMAS to evaluate the relationship between quantitative alterations in metabolite concentrations and tissue features in human brain tumour biopsies. Analytical and Bioanalytical Chemistry. 403:2611-2625. https://doi.org/10.1007/s00216-012-6001-zS26112625403Cheng LL, Chang IW, Louis DN, Gonzalez RG (1998) Cancer Res 58:1825–1832Opstad KS, Bell BA, Griffiths JR, Howe FA (2008) Magn Reson Med 60:1237–1242Sjobakk TE, Johansen R, Bathen TF, Sonnewald U, Juul R, Torp SH, Lundgren S, Gribbestad IS (2008) NMR Biomed 21:175–185Martinez-Bisbal MC, Marti-Bonmati L, Piquer J, Revert A, Ferrer P, Llacer JL, Piotto M, Assemat O, Celda B (2004) NMR Biomed 17:191–205Erb G, Elbayed K, Piotto M, Raya J, Neuville A, Mohr M, Maitrot D, Kehrli P, Namer IJ (2008) Magn Reson Med 59:959–965Wilson M, Davies NP, Brundler MA, McConville C, Grundy RG, Peet AC (2009) Mol Cancer 8:6Martinez-Bisbal MC, Monleon D, Assemat O, Piotto M, Piquer J, Llacer JL, Celda B (2009) NMR Biomed 22:199–206Martínez-Granados B, Monleón D, Martínez-Bisbal MC, Rodrigo JM, del Olmo J, Lluch P, Ferrández A, Martí-Bonmatí L, Celda B (2006) NMR Biomed 19:90–100Hubesch B, Sappey-Marinier D, Roth K, Meyerhoff DJ, Matson GB, Weiner MW (1990) Radiology 174:401–409Albers MJ, Krieger MD, Gonzalez-Gomez I, Gilles FH, McComb JG, Nelson MD Jr, Bluml S (2005) Magn Reson Med 53:22–29Wijnen JP, Scheenen TW, Klomp DW, Heerschap A (2010) NMR Biomed 23:968–976Podo F (1999) NMR Biomed 12:413–439Griffiths JR, Cady E, Edwards RH, McCready VR, Wilkie DR, Wiltshaw E (1983) Lancet 1:1435–1436Robitaille PL, Robitaille PA, Gordon Brown G, Brown GG (1991) J Magn Reson 92:73–84, 1969Griffiths JR (1991) Br J Cancer 64:425–427Payne GS, Troy H, Vaidya SJ, Griffiths JR, Leach MO, Chung YL (2006) NMR Biomed 19:593–598De Silva SS, Payne GS, Thomas V, Carter PG, Ind TE, deSouza NM (2009) NMR Biomed 22:191–198Wang Y, Cloarec O, Tang H, Lindon JC, Holmes E, Kochhar S, Nicholson JK (2008) Anal Chem 80:1058–1066Lehnhardt FG, Rohn G, Ernestus RI, Grune M, Hoehn M (2001) NMR Biomed 14:307–317Srivastava NK, Pradhan S, Gowda GA, Kumar R (2010) NMR Biomed 23:113–122Akoka S, Barantin L, Trierweiler M (1999) Anal Chem 71:2554–2557Albers MJ, Butler TN, Rahwa I, Bao N, Keshari KR, Swanson MG, Kurhanewicz J (2009) Magn Reson Med 61:525–532Ben Sellem D, Elbayed K, Neuville A, Moussallieh FM, Lang-Averous G, Piotto M, Bellocq JP, Namer IJ (2011) J Oncol 2011:174019Bourne R, Dzendrowskyj T, Mountford C (2003) NMR Biomed 16:96–101Martinez-Bisbal MC, Esteve V, Martinez-Granados B, Celda B (2011) J Biomed Biotechnol 2011:763684, Epub 2010 Sep 5Celda B, Montelione GT (1993) J Magn Reson B 101:189–193Esteve V, Celda B (2008) Magn Reson Mater Phys MAGMA 21:484–484Collins TJ (2007) Biotechniques 43:25–30Govindaraju V, Young K, Maudsley AA (2000) NMR Biomed 13:129–153Fan TW-M (1996) Prog Nucl Magn Reson Spectrosc 28:161–219Ulrich EL, Akutsu H, Doreleijers JF, Harano Y, Ioannidis YE, Lin J, Livny M, Mading S, Maziuk D, Miller Z, Nakatani E, Schulte CF, Tolmie DE, Kent Wenger R, Yao H, Markley JL (2008) Nucleic Acids Res 36:D402–D408Kriat M, Vion-Dury J, Confort-Gouny S, Favre R, Viout P, Sciaky M, Sari H, Cozzone PJ (1993) J Lipid Res 34:1009–1019Subramanian A, Shankar Joshi B, Roy AD, Roy R, Gupta V, Dang RS (2008) NMR Biomed 21:272–288Daykin CA, Corcoran O, Hansen SH, Bjornsdottir I, Cornett C, Connor SC, Lindon JC, Nicholson JK (2001) Anal Chem 73:1084–1090Griffin JL, Lehtimaki KK, Valonen PK, Grohn OH, Kettunen MI, Yla-Herttuala S, Pitkanen A, Nicholson JK, Kauppinen RA (2003) Cancer Res 63:3195–3201Petroff OAC, Prichard JW (1995) In: Kraicer J, Dixon SJ (eds) Methods in neurosciences. Academic, San DiegoBarton S, Howe F, Tomlins A, Cudlip S, Nicholson J, Anthony Bell B, Griffiths J (1999) Magn Reson Mater Phys Biol Med 8:121–128Sitter B, Sonnewald U, Spraul M, Fjosne HE, Gribbestad IS (2002) NMR Biomed 15:327–337Coen M, Hong YS, Cloarec O, Rhode CM, Reily MD, Robertson DG, Holmes E, Lindon JC, Nicholson JK (2007) Anal Chem 79:8956–8966Russell D, Rubinstein LJ (1998) Russel and Rubinstein's pathology of tumors of the nervous system. Arnold, LondonTynkkynen T, Tiainen M, Soininen P, Laatikainen R (2009) Anal Chim Acta 648:105–112Kjaergaard M, Brander S, Poulsen F (2011) J Biomol NMR 49:139–149Robert O, Sabatier J, Desoubzdanne D, Lalande J, Balayssac S, Gilard V, Martino R, Malet-Martino M (2011) Anal Bioanal Chem 399:987–999Chadzynski GL, Bender B, Groeger A, Erb M, Klose U (2011) J Magn Reson 212:55–63Weljie AM, Jirik FR (2011) Int J Biochem Cell Biol 43:981–989Barba I, Cabanas ME, Arus C (1999) Cancer Res 59:1861–1868Liimatainen T, Hakumaki JM, Kauppinen RA, Ala-Korpela M (2009) NMR Biomed 22:272–279Opstad KS, Bell BA, Griffiths JR, Howe FA (2008) NMR Biomed 21:677–685Schmitz JE, Kettunen MI, Hu D, Brindle KM (2005) Magn Reson Med 54:43–50Glunde K, Artemov D, Penet MF, Jacobs MA, Bhujwalla ZM (2010) Chem Rev 110:3043–3059Hertz L (2008) Neuropharmacology 55:289–309Takahashi T, Otsuguro K, Ohta T, Ito S (2010) Br J Pharmacol 161:1806–181

    1H nuclear magnetic resonance spectroscopy characterisation of metabolic phenotypes in the medulloblastoma of the SMO transgenic mice

    Get PDF
    BACKGROUND: Human medulloblastomas exhibit diverse molecular pathology. Aberrant hedgehog signalling is found in 20-30% of human medulloblastomas with largely unknown metabolic consequences. METHODS: Transgenic mice over-expressing smoothened (SMO) receptor in granule cell precursors with high incidence of exophytic medulloblastomas were sequentially followed up by magnetic resonance imaging (MRI) and characterised for metabolite phenotypes by ¹H MR spectroscopy (MRS) in vivo and ex vivo using high-resolution magic angle spinning (HR-MAS) ¹H MRS. RESULTS: Medulloblastomas in the SMO mice presented as T₂ hyperintense tumours in MRI. These tumours showed low concentrations of N-acetyl aspartate and high concentrations of choline-containing metabolites (CCMs), glycine, and taurine relative to the cerebellar parenchyma in the wild-type (WT) C57BL/6 mice. In contrast, ¹H MRS metabolite concentrations in normal appearing cerebellum of the SMO mice were not different from those in the WT mice. Macromolecule and lipid ¹H MRS signals in SMO medulloblastomas were not different from those detected in the cerebellum of WT mice. The HR-MAS analysis of SMO medulloblastomas confirmed the in vivo ¹H MRS metabolite profiles, and additionally revealed that phosphocholine was strongly elevated in medulloblastomas accounting for the high in vivo CCM. CONCLUSIONS: These metabolite profiles closely mirror those reported from human medulloblastomas confirming that SMO mice provide a realistic model for investigating metabolic aspects of this disease. Taurine, glycine, and CCM are potential metabolite biomarkers for the SMO medulloblastomas. The MRS data from the medulloblastomas with defined molecular pathology is discussed in the light of metabolite profiles reported from human tumours

    Metabolic profiling of human brain metastases using in vivo proton MR spectroscopy at 3T

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metastases to the central nervous system from different primary cancers are an oncologic challenge as the overall prognosis for these patients is generally poor. The incidence of brain metastases varies with type of primary cancer and is probably increasing due to improved therapies of extracranial metastases prolonging patient's overall survival and thereby time for brain metastases to develop. In addition, the greater access to improved neuroimaging techniques can provide earlier diagnosis. The aim of this study was to investigate the feasibility of using proton magnetic resonance spectroscopy (MRS) and multivariate analyses to characterize brain metastases originating from different primary cancers, to assess changes in spectra during radiation treatment and to correlate the spectra to clinical outcome after treatment.</p> <p>Methods</p> <p>Patients (n = 26) with brain metastases were examined using single voxel MRS at a 3T clinical MR system. Five patients were excluded due to poor spectral quality. The spectra were obtained before start (n = 21 patients), immediately after (n = 6 patients) and two months after end of treatment (n = 4 patients). Principal component analysis (PCA) and partial least square regression analysis (PLS) were applied in order to identify clustering of spectra due to origin of metastases and to relate clinical outcome (survival) of the patients to spectral data from the first MR examination.</p> <p>Results</p> <p>The PCA results indicated that brain metastases from primary lung and breast cancer were separated into two clusters, while the metastases from malignant melanomas showed no uniformity. The PLS analysis showed a significant correlation between MR spectral data and survival five months after MRS before start of treatment.</p> <p>Conclusion</p> <p>MRS determined metabolic profiles analysed by PCA and PLS might give valuable clinical information when planning and evaluating the treatment of brain metastases, and also when deciding to terminate further therapies.</p

    CRF-Like Diuretic Hormone Negatively Affects Both Feeding and Reproduction in the Desert Locust, Schistocerca gregaria

    Get PDF
    Diuretic hormones (DH) related to the vertebrate Corticotropin Releasing Factor (CRF) have been identified in diverse insect species. In the migratory locust, Locusta migratoria, the CRF-like DH (CRF/DH) is localized in the same neurosecretory cells as the Ovary Maturating Parsin (OMP), a neurohormone that stimulates oocyte growth, vitellogenesis and hemolymph ecdysteroid levels in adult female locusts. In this study, we investigated whether CRF-like DH can influence feeding and reproduction in the desert locust, Schistocerca gregaria. We identified two highly similar S. gregaria CRF-like DH precursor cDNAs, each of which also encodes an OMP isoform. Alignment with other insect CRF-like DH precursors shows relatively high conservation of the CRF/DH sequence while the precursor region corresponding to OMP is not well conserved. Quantitative real-time RT-PCR revealed that the precursor transcripts mainly occur in the central nervous system and their highest expression level was observed in the brain. Injection of locust CRF/DH caused a significantly reduced food intake, while RNAi knockdown stimulated food intake. Therefore, our data indicate that CRF-like DH induces satiety. Furthermore, injection of CRF/DH in adult females retarded oocyte growth and caused lower ecdysteroid titers in hemolymph and ovaries, while RNAi knockdown resulted in opposite effects. The observed effects of CRF/DH may be part of a wider repertoire of neurohormonal activities, constituting an integrating control system that affects food intake and excretion, as well as anabolic processes like oocyte growth and ecdysteroidogenesis, following a meal. Our discussion about the functional relationship between CRF/DH and OMP led to the hypothesis that OMP may possibly act as a monitoring peptide that can elicit negative feedback effects
    corecore