1,382 research outputs found
Trotter-Kato product formulae in Dixmier ideal
It is shown that for a certain class of the Kato functions the Trotter-Kato
product formulae converge in Dixmier ideal C 1, in topology, which is
defined by the 1,-norm. Moreover, the rate of convergence in
this topology inherits the error-bound estimate for the corresponding
operator-norm convergence. 1 since [24], [14]. Note that a subtle point of this
program is the question about the rate of convergence in the corresponding
topology. Since the limit of the Trotter-Kato product formula is a strongly
continuous semigroup, for the von Neumann-Schatten ideals this topology is the
trace-norm 1 on the trace-class ideal C 1 (H). In this case the limit
is a Gibbs semigroup [25]. For self-adjoint Gibbs semigroups the rate of
convergence was estimated for the first time in [7] and [9]. The authors
considered the case of the Gibbs-Schr{\"o}dinger semigroups. They scrutinised
in these papers a dependence of the rate of convergence for the (exponential)
Trotter formula on the smoothness of the potential in the Schr{\"o}dinger
generator. The first abstract result in this direction was due to [19]. In this
paper a general scheme of lifting the operator-norm rate convergence for the
Trotter-Kato product formulae was proposed and advocated for estimation the
rate of the trace-nor
First proof of concept of remote attendance for future observation strategies between Wettzell (Germany) and Concepción (Chile)
Current VLBI observations are controlled and attended locally at the radio telescopes on the basis of pre-scheduled session files. Operations have to deal with system specific station commands and individual setup procedures. Neither the scheduler nor the correlator nor the data-analyst gets real-time feedback about system parameters during a session. Changes in schedules after the start of a session by remote are impossible or at least quite difficult. For future scientific approaches, a more flexible mechanism would optimize the usage of resources at the sites. Therefore shared-observation control between world-wide telescope s, remote attendance/control as well as completely unattended-observations could be useful, in addition to the classic way to run VLBI observations. To reach these goals, the Geodetic Observatory Wettzell in cooperation with the Max-Planck-Institute for Radio Astronomy (Bonn) have developed a software extension to the existing NASA Field System for remote control. It uses the principle of a remotely accessible, autonomous process cell as server extension to the Field System on the basis of Remote Procedure Calls (RPC). Based on this technology the first completely remote attended and controlled geodetic VLBI session between Wettzell, Germany and Concepción, Chile was successfully performed over 24 hours. This first test was extremely valuable for gathering information about the differences between VLBI systems and measuring the performance of internet connections and automatic connection re-establishments. During the 24h-session, the network load, the number of sent/received packages and the transfer speed were monitor ed and captured. It was a first reliable test for the future wishes to control several telescopes with one graphical user interface on different data transfer rates over large distances in an efficient way. In addition, future developments for an authentication and user role management will be realized within the upcoming NEXPReS project
Sufficient conditions for the anti-Zeno effect
The ideal anti-Zeno effect means that a perpetual observation leads to an
immediate disappearance of the unstable system. We present a straightforward
way to derive sufficient conditions under which such a situation occurs
expressed in terms of the decaying states and spectral properties of the
Hamiltonian. They show, in particular, that the gap between Zeno and anti-Zeno
effects is in fact very narrow.Comment: LatEx2e, 9 pages; a revised text, to appear in J. Phys. A: Math. Ge
A Markov Chain based method for generating long-range dependence
This paper describes a model for generating time series which exhibit the
statistical phenomenon known as long-range dependence (LRD). A Markov Modulated
Process based upon an infinite Markov chain is described. The work described is
motivated by applications in telecommunications where LRD is a known property
of time-series measured on the internet. The process can generate a time series
exhibiting LRD with known parameters and is particularly suitable for modelling
internet traffic since the time series is in terms of ones and zeros which can
be interpreted as data packets and inter-packet gaps. The method is extremely
simple computationally and analytically and could prove more tractable than
other methods described in the literatureComment: 8 pages, 2 figure
The cytoplasm of living cells: A functional mixture of thousands of components
Inside every living cell is the cytoplasm: a fluid mixture of thousands of
different macromolecules, predominantly proteins. This mixture is where most of
the biochemistry occurs that enables living cells to function, and it is
perhaps the most complex liquid on earth. Here we take an inventory of what is
actually in this mixture. Recent genome-sequencing work has given us for the
first time at least some information on all of these thousands of components.
Having done so we consider two physical phenomena in the cytoplasm: diffusion
and possible phase separation. Diffusion is slower in the highly crowded
cytoplasm than in dilute solution. Reasonable estimates of this slowdown can be
obtained and their consequences explored, for example, monomer-dimer equilibria
are established approximately twenty times slower than in a dilute solution.
Phase separation in all except exceptional cells appears not to be a problem,
despite the high density and so strong protein-protein interactions present. We
suggest that this may be partially a byproduct of the evolution of other
properties, and partially a result of the huge number of components present.Comment: 11 pages, 1 figure, 1 tabl
Strong negative self regulation of Prokaryotic transcription factors increases the intrinsic noise of protein expression
Background
Many prokaryotic transcription factors repress their own transcription. It is often asserted that such regulation enables a cell to homeostatically maintain protein abundance. We explore the role of negative self regulation of transcription in regulating the variability of protein abundance using a variety of stochastic modeling techniques.
Results
We undertake a novel analysis of a classic model for negative self regulation. We demonstrate that, with standard approximations, protein variance relative to its mean should be independent of repressor strength in a physiological range. Consequently, in that range, the coefficient of variation would increase with repressor strength. However, stochastic computer simulations demonstrate that there is a greater increase in noise associated with strong repressors than predicted by theory. The discrepancies between the mathematical analysis and computer simulations arise because with strong repressors the approximation that leads to Michaelis-Menten-like hyperbolic repression terms ceases to be valid. Because we observe that strong negative feedback increases variability and so is unlikely to be a mechanism for noise control, we suggest instead that negative feedback is evolutionarily favoured because it allows the cell to minimize mRNA usage. To test this, we used in silico evolution to demonstrate that while negative feedback can achieve only a modest improvement in protein noise reduction compared with the unregulated system, it can achieve good improvement in protein response times and very substantial improvement in reducing mRNA levels.
Conclusions
Strong negative self regulation of transcription may not always be a mechanism for homeostatic control of protein abundance, but instead might be evolutionarily favoured as a mechanism to limit the use of mRNA. The use of hyperbolic terms derived from quasi-steady-state approximation should also be avoided in the analysis of stochastic models with strong repressors
Ionization Probabilities through ultra-intense Fields in the extreme Limit
We continue our investigation concerning the question of whether atomic bound
states begin to stabilize in the ultra-intense field limit. The pulses
considered are essentially arbitrary, but we distinguish between three
situations. First the total classical momentum transfer is non-vanishing,
second not both the total classical momentum transfer and the total classical
displacement are vanishing together with the requirement that the potential has
a finite number of bound states and third both the total classical momentum
transfer and the total classical displacement are vanishing. For the first two
cases we rigorously prove, that the ionization probability tends to one when
the amplitude of the pulse tends to infinity and the pulse shape remains fixed.
In the third case the limit is strictly smaller than one. This case is also
related to the high frequency limit considered by Gavrila et al.Comment: 16 pages LateX, 2 figure
Invariant Distribution of Promoter Activities in Escherichia coli
Cells need to allocate their limited resources to express a wide range of genes. To understand how Escherichia coli partitions its transcriptional resources between its different promoters, we employ a robotic assay using a comprehensive reporter strain library for E. coli to measure promoter activity on a genomic scale at high-temporal resolution and accuracy. This allows continuous tracking of promoter activity as cells change their growth rate from exponential to stationary phase in different media. We find a heavy-tailed distribution of promoter activities, with promoter activities spanning several orders of magnitude. While the shape of the distribution is almost completely independent of the growth conditions, the identity of the promoters expressed at different levels does depend on them. Translation machinery genes, however, keep the same relative expression levels in the distribution across conditions, and their fractional promoter activity tracks growth rate tightly. We present a simple optimization model for resource allocation which suggests that the observed invariant distributions might maximize growth rate. These invariant features of the distribution of promoter activities may suggest design constraints that shape the allocation of transcriptional resources
Non-equilibrium states of a photon cavity pumped by an atomic beam
We consider a beam of two-level randomly excited atoms that pass one-by-one
through a one-mode cavity. We show that in the case of an ideal cavity, i.e. no
leaking of photons from the cavity, the pumping by the beam leads to an
unlimited increase in the photon number in the cavity. We derive an expression
for the mean photon number for all times. Taking into account leaking of the
cavity, we prove that the mean photon number in the cavity stabilizes in time.
The limiting state of the cavity in this case exists and it is independent of
the initial state. We calculate the characteristic functional of this
non-quasi-free non-equilibrium state. We also calculate the energy flux in both
the ideal and open cavity and the entropy production for the ideal cavity.Comment: Corrected energy production calculations and made some changes to
ease the readin
Membranes by the Numbers
Many of the most important processes in cells take place on and across
membranes. With the rise of an impressive array of powerful quantitative
methods for characterizing these membranes, it is an opportune time to reflect
on the structure and function of membranes from the point of view of biological
numeracy. To that end, in this article, I review the quantitative parameters
that characterize the mechanical, electrical and transport properties of
membranes and carry out a number of corresponding order of magnitude estimates
that help us understand the values of those parameters.Comment: 27 pages, 12 figure
- …
