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Abstract

We continue our investigation concerning the question of whether
atomic bound states begin to stabilize in the ultra-intense field limit.
The pulses considered are essentially arbitrary, but we distinguish be-
tween three situations. First the total classical momentum transfer is
non-vanishing, second not both the total classical momentum transfer
and the total classical displacement are vanishing together with the
requirement that the potential has a finite number of bound states
and third both the total classical momentum transfer and the total
classical displacement are vanishing. For the first two cases we rig-
orously prove, that the ionization probability tends to one when the
amplitude of the pulse tends to infinity and the pulse shape remains
fixed. In the third case the limit is strictly smaller than one. This
case is also related to the high frequency limit considered by Gavrila
et al.
PACS numbers: 32.80.Rm, 32.80.Fb, 33.80.Rv, 42.50.Hz, 03.65.Db

July 1997

1e-mail addresses: Fring@physik.fu-berlin.de,
Kostrykin@ilt.fhg.de
Schrader@physik.fu-berlin.de

http://arxiv.org/abs/quant-ph/9707059v1
http://arxiv.org/abs/quant-ph/9707059


Ionization probabilities of atomic systems in the presence of intense laser
fields are in general poorly predicted. Intense means here that the field
intensities are of comparable size in magnitude with the ionization energy of
the potential and hence conventional perturbation theory ceases to be valid.
Numerous different methods for theoretical investigations have been carried
out in order to treat the new intensity regime, such as perturbative methods
around the Gordon-Volkov solution [1] of the Schrödinger equation [2, 3, 4, 5,
6, 7, 8], fully numerical solutions of the Schrödinger equation [9, 10, 11, 12, 13,
14, 15, 16], Floquet solutions [17, 18, 19], high frequency approximations [20]
or analogies to classical dynamical systems [21]. Some of these investigations
have led to the prediction of so-called atomic stabilization, which means
that the ionization probability is supposed to decrease once a certain critical
intensity has been surpassed. However, several authors have raised doubts
and question whether such an effect really exists [7, 27, 25, 5, 8, 28, 29, 30].
For reviews on the subject we refer the reader to [22, 23, 24, 26].

In this paper we want to continue our previous investigations [28, 29, 30]
and answer the question concerning the ionization probability in the limit
when the field amplitude tends to infinity, while the pulse shape remains
fixed. Of course strictly speaking one would have to include relativistic effects
into the analysis at some high intensities and then a proper quantum field
theoretical treatment is needed. However, the Schrödinger theory with the
a.c. Stark Hamiltonian is consistent in itself, also in that regime, and in this
light the limit becomes meaningful. Clearly our analysis does not capture
the effect of window stabilization, which is the purported phenomenon that
stabilization only occurs in a certain regime of high intensities and then the
ionization probability tends to one once this regime is surpassed.

We consider the Schrödinger equation involving some potential V (~x), for
instance the atomic potential, coupled to a classical linearly polarized electric
field in the dipole approximation E (t)

i
∂ψ (~x, t)

∂t
=

(
−∆

2
+ V (~x) + z · E (t)

)
ψ (~x, t) = H (t)ψ (~x, t) . (1)

We use atomic units ~ = e = me = cα = 1 and we will mainly adopt the
notations in [28]. We now want to state precisely which type of potentials
and electric fields are included in our analysis.

Assumptions on V: V (~x) is a real measurable function on R
3. To each
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ε > 0 one may decompose V as

V = V1 + V2 (2)

where V1 is in L2 (R3) (i.e. square integrable) with compact support
and V2 is in L∞ (R3) with

‖V2‖∞ = ess sup
~x∈R3

|V2(~x)| ≤ ε . (3)

Furthermore we assume that H = H0 + V with H0 = −∆
2

has no
positive bound states.

Relation (3) means that up to a set of measure zero V2(~x) is bounded
in absolute value by ε. We note that the potentials of atoms or molecules
arising from Coulomb pair interactions belong to this wide class. To obtain
for instance the decomposition (2) for the Coulomb potential 1/|~x| we set

1

|~x| =
χ1/ε(~x)

|~x| +
1 − χ1/ε(~x)

|~x| ,

where χR(~x) is the characteristic function of the ball {~x : |~x| ≤ R} of radius
R,

χR(~x) =

{
1 for |~x| ≤ R
0 for |~x| > R .

Potentials satisfying the above assumptions are Kato small, i.e. for each
α with 0 < α ≤ 1, there exists a constant β = β(α) ≥ 0 such that

‖V ψ‖ ≤ α

∥∥∥∥−
∆

2
ψ

∥∥∥∥ + β ‖ψ‖ (4)

for all ψ ∈ L2 (R3) with ∆ψ ∈ L2 (R3). The Hamiltonian H is self-adjoint
on the Hilbertspace L2 (R3) and the domains D (H) and D (H0) of definition
of H and H0 agree [31]. H is bounded from below and has no positive
eigenvalues if V decays suitably at infinity [32, 33].

As for the conditions on the electric field, we assume that it takes on the
form

E (t) = E0f (t) , (5)
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where f (t) is assumed to be measurable in t with f (t) = 0 unless 0 ≤ t ≤ τ .
We call τ the pulse duration, f(t) the pulse shape and E0 the amplitude of
the pulse E (t) . Further we introduce the quantities

b (t) =

t∫

0

dsE (s) = E0

t∫

0

ds f (s) = E0b0 (t) (6)

c (t) =

t∫

0

ds b (s) = tb (t) −
t∫

0

dsE (s) s = E0c0 (t) . (7)

With ez being the unit vector in z-direction, b (τ ) ez is the total classical
momentum transfer and c (τ ) ez the total classical displacement. We are now
in the position to formulate more precisely our assumptions on the electric
field, that is on the pulse shape f(t).

Assumptions on E: f (t) is a real measurable non-vanishing function in
t, with support in the interval [0, τ ] such that

b0 (τ ) 6= 0. (8)

In case the potential possesses a finite number of bound states we only
assume that

b0 (τ)2 + c0 (τ)2 6= 0. (9)

Finally, c0 (t) is supposed to be piecewise continuous possibly with a
finite number of zeros in [0, τ ].

Of course the restrictions of a finite number of bound states excludes the
Coulomb Potential. However, we would like to remark that in general most
numerical calculations in this context implicitly also assume a finite number
of bound states. When projecting on bound states numerically, one is always
forced to introduce a cut-off. Hence our analysis allows also in that case a
direct comparison with such computations. The gain in the latter case is
that when the requirement (8) is relaxed to (9) it allows to include more
types of pulses such as Gaussian etc. All pulses used in the literature satisfy
assumption E.

The ionization probability for any given normalized bound state ψ of the
Hamiltonian H is given by

P (ψ) = ‖(1 − P )U (τ , 0)ψ‖2 = 1 − ‖PU (τ , 0)ψ‖2 . (10)
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Here U (t′, t) denotes the unitary time evolution operator from time t to time
t′ associated to H(t). Its existence 1 follows from results in [38, 39] (for
details see [37]).

Further P denotes the orthogonal projection in L2 (R3) on the space
spanned by the bound states of H = H0 + V . For more details on the
precise definition of the ionization probability and its properties we refer the
reader to [28]. In what follows f(t) and V will be fixed.

We now formulate the Main Theorem of this article:

Theorem 1 With the above assumptions on the electric field E and the po-
tential V, the ionization probability P for any bound state ψ of H = H0 + V
tends to one for the field amplitude E0 going to infinity

lim
|E0|→∞

P (ψ) = 1 .

This improves a previous result in [28] (see relation (3.31) therein), which
stated that lim|E0|→∞P (ψ) ≥ 1 − τ 2c, where c is a constant depending on
the potential V and on ψ only. The proof of this main theorem in case of
condition (9) shows that the finite dimensional projector P may in fact be
chosen arbitrarily. In particular in the case of the Coulomb potential, P may
be the projector on the space spanned by any finite set of bound states.
Proof of the Main Theorem:

To start the proof of the main theorem following [28] we may first rewrite
the ionization probability as

P (ψ) = 1 − ‖P exp−ib (τ ) z · exp ic (τ ) pz · U ′ (τ , 0)ψ‖2
. (11)

Here U ′ (t′, t) is the unitary time evolution operator associated to the Stark
Hamiltonian (1) in the Kramers-Henneberger gauge [34, 35]

H ′(t) = −∆

2
+ V (~x− c (t) ez) . (12)

1In order to show the existence one actually has to make some additional sufficient
assumptions on V, namely one assumes that Vi(~x − uez), i = 1, 2 are L2 and L∞ valued
continuous functions in u, such that in addition

Wi(u) =
∂

∂u
Vi(~x − uez), i = 1, 2

exists and satisfies ‖W1(u)‖p < ∞ for some 6/5 < p ≤ 4/3 and ‖W2(u)‖∞ < ∞ uniformly
in u on compact sets in R. So strictly speaking we have to extend our assumptions on V.
However, for standard potentials like Coulomb etc. this additional assumption is always
satisfied and we therefore omitted it above for the sake of clarity.
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Crucial for the proof of the main theorem will be the next result, that
in the limit E0 → ∞ the time evolution U ′ for H ′(t) is just the free time
evolution. We will need this result in the following form

Theorem 2 For all ϕ ∈ L2 (R3)

lim
|E0|→∞

‖(U ′(τ , 0) − exp−iτH0)ϕ‖ = 0, (13)

i.e. U ′(τ , 0) converges strongly to exp(−iτH0) as |E0| → ∞.

The proof of this theorem will proceed in several steps. Before we begin
with the proof we note that this is essentially Kato’s theorem on the strong
convergence of propagators for time dependent Hamiltonians [40]. However
we cannot use this theorem directly since it is not valid for Hamiltonians with
Coulomb interaction. Since ‖(U ′(τ , 0) − exp−iτH0)ϕ‖ ≤ 2 ‖ϕ‖ it suffices to
prove (13) for all ϕ ∈ D(H0) = D(H), which is a dense set in L2 (R3).

First we use Du Hamel’s formula to write

(U ′(τ , 0) − exp−iτH0)ϕ = −i
∫ τ

0

U ′(τ , s)V (~x− c(s)ez) exp−isH0 ϕds(14)

with ϕ ∈ D(H0). We note that by the spectral theorem exp−isH0 leaves
D(H0) invariant. Therefore from (14) it follows that

‖(U ′(τ , 0) − exp−iτH0)ϕ‖ ≤
∫ τ

0

‖V (~x− c(s)ez) exp−isH0 · ϕ‖ ds, (15)

uniformly in E0.
To proceed further we use the following

Lemma 3 For any ϕ ∈ D (H) = D (H0) and all s ∈ [0, τ ] with c0(s) 6= 0
one has

lim
E0→∞

‖V (~x− c(s)γez)ϕ‖ = 0. (16)
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Proof: It suffices to show that for any ϕ ∈ D (H) = D (H0)

lim
|γ|→∞

‖V (~x− γez)ϕ‖ = 0.

We show that for arbitrary small ε > 0 the estimate ‖V (~x−γez)ϕ‖ < ε
holds for all sufficiently large γ > 0.

Since V is Kato small and since −∆ commutes with translations, the
potential in the Kramers-Henneberger gauge satisfies a similar estimate

‖V (~x− γez)ϕ‖ ≤
∥∥∥∥−

∆

2
ϕ

∥∥∥∥ + β ‖ϕ‖ (17)

with fixed β <∞ and for all γ.

Indeed,

‖V (~x− γez)ϕ‖ = ‖V (~x) exp(iγpz) ϕ‖
≤ ‖H0 exp(iγpz) ϕ‖ + β‖ exp(iγpz) ϕ‖ = ‖H0ϕ‖ + β‖ϕ‖,

where the last equality follows from the fact that H0 commutes with
the translations. In comparison with (4) we have taken α = 1 and
chosen β = max(β(α = 1), 1). Hence it suffices to prove (16) on a
core for H0 which is also a core for H . We recall that C is a core
for a self-adjoint operator A with domain D (A), if C is contained and
dense in D (A) with respect to the topology in D (A) given by the norm
‖ϕ‖D(A) = ‖Aϕ‖ + ‖ϕ‖. Indeed, for a given ϕ ∈ D (H0) let ϕ′ ∈ C be
such that

‖H0(ϕ− ϕ′)‖ + ‖(ϕ− ϕ′)‖ ≤ ε

2β
.

Also let γ(ε, ϕ′) be such that

‖V (~x− γez)ϕ
′‖ ≤ ε

2
for all γ ≥ γ(ε, ϕ′).

Then

‖V (~x− γez)ϕ‖ ≤ ‖V (~x− γez) (ϕ− ϕ′)‖ + ‖V (~x− γez)ϕ
′‖

≤ ‖H0(ϕ− ϕ′)‖ + β ‖(ϕ− ϕ′)‖ +
ε

2
≤ ε.
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Now C∞
0 (R3), the set of smooth functions on R

3 with compact support,
is such a core and we will now prove (16) on this core. Assuming that
ϕ ∈ C∞

0 (R3) is normalized, we obtain with the assumptions on V

‖V (~x− γez)ϕ‖ ≤ ‖V1 (~x− γez)ϕ‖ + ‖V2 (~x− γez)ϕ‖
≤ ‖V1 (~x− γez)ϕ‖ + ε.

For |γ| sufficiently large V1 (~x− γez)ϕ = 0 and the lemma follows.

We proceed with the proof of the theorem. Since for fixed ϕ ∈ D (H0) the
map exp(−isH0) : [0, τ ] → D (H0) given by s 7→ exp(−isH0)ϕ is continuous,
the set S = {exp(−isH0)ϕ}0≤s≤τ is compact in D (H0). Therefore

‖V (~x− c(s)ez)ψ‖ → 0

as |E0| → ∞ uniformly in ψ ∈ S for all s ∈ [0, τ ] except the finite set where
c0(s) = 0 (see e.g. [41]). Now the r.h.s. of (15) for any ϕ ∈ D(H0) can be
bounded by

‖(U ′(τ , 0) − exp−iτH0)ϕ‖ ≤
∫ τ

0

sup
ψ∈S

‖V (~x− c(s)ez)ψ‖ds. (18)

From (17) and the definition of S it follows also that

‖V (~x− c(s)ez)ψ‖ ≤ Cϕ

for all ψ ∈ S and all s ∈ [0, τ ] with

Cϕ =

∥∥∥∥−
∆

2
ϕ

∥∥∥∥ + β ‖ϕ‖

for every ϕ ∈ D(H0) uniformly in E0.
By the Lebesgue dominated convergence theorem we therefore have that

the right hand side of (18) tends to zero as |E0| → ∞.
This completes the proof of the theorem.

Remark 5 From the preceding discussion, it is obvious how to weaken the
last condition in the assumptions on E. Assume we may divide the in-
terval [0, τ ] into 2N +1 parts as 0 = τ 0 < τ 1 < · · · < τ 2N < τ 2N+1 = τ ,
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such that c0(t) vanishes identically in the intervals [τ 2j , τ 2j+1] (0 ≤ j ≤ N)
and is non-zero except for a finite set in the intervals [τ 2j+1, τ 2j+2]
(0 ≤ j ≤ N − 1). Then U ′ (τ , 0) converges strongly to

U ′′ = e−i(τ2N+1−τ2N )H0 · e−i(τ2N−τ2N−1)H · · · e−i(τ2−τ1)H · e−i(τ1−τ0)H0 .
(19)

Since f(t) is by assumption not identically zero, c0 (t) is not identically
zero on [0, τ ], so U ′′ 6= exp−iτH .

To prove the main theorem it suffices now by Theorem 2 and the obvious
estimate

∥∥Pe−ib(τ)z · eic(τ)pz · U ′(τ , 0)ψ
∥∥

≤
∥∥Pe−ib(τ)z · eic(τ)pz · e−iτH0ψ

∥∥ +
∥∥Pe−ib(τ)z · eic(τ)pz ·

(
U ′(τ , 0) − e−iτH0

)
ψ

∥∥

≤
∥∥Pe−ib(τ)z · eic(τ)pz · e−iτH0ψ

∥∥ +
∥∥(
U ′(τ , 0) − e−iτH0

)
ψ

∥∥

to show that

lim
|E0|→∞

‖P exp−ib (τ ) z · exp ic (τ) pz · exp−iτH0ψ‖ = 0 . (20)

Here exp−iτH0 has to be replaced by U ′′ in case remark 5 applies. Since
exp−iτH0 leaves D (H0) invariant, it is enough to show

lim
|E0|→∞

‖P exp−ib (τ) z · exp ic (τ ) pzϕ‖ = 0 . (21)

for all ϕ ∈ D (H) = D (H0) in order to prove (20).
We now modify some arguments already used in [36] and [28]. First we

consider the case when b0 (τ) 6= 0. Also by assumption we have PH ≤ 0.

Hence P
(
H − 1

2
b (τ)2)−1

is a well defined operator with norm smaller or

equal to 2/b (τ)2 . Therefore we have

‖P exp−ib (τ) z · exp ic (τ) pzϕ‖

=

∥∥∥∥∥P
(
H − 1

2
b (τ)2

)−1 (
H − 1

2
b (τ )2

)
exp−ib (τ ) z · exp ic (τ ) pzϕ

∥∥∥∥∥

≤ 2

b (τ )2

∥∥∥∥
(
H − 1

2
b (τ)2

)
exp−ib (τ) z · exp ic (τ ) pzϕ

∥∥∥∥ . (22)
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Inserting the relation

exp−ic (τ ) pz · exp ib (τ) z ·H · exp−ib (τ ) z · exp ic (τ ) pz

= H0 − b (τ ) pz +
1

2
b (τ)2 + V (~x− c (τ) ez) (23)

into (22) yields

‖P exp−ib (τ) z · exp ic (τ) pzϕ‖

≤ 2

b (τ )2 {‖H0ϕ‖ + b (τ) ‖pzϕ‖ + ‖V (~x− c (τ) ez)ϕ‖} . (24)

Furthermore

‖pzϕ‖2 =
〈
ϕ, p2

zϕ
〉
≤ 2 〈ϕ,H0ϕ〉 ≤

〈
ϕ,H0

2ϕ
〉

+ 〈ϕ, ϕ〉 ,

such that
‖pzϕ‖ ≤ ‖H0ϕ‖ + ‖ϕ‖ . (25)

Finally we have that ‖V (~x− c (τ) ez)ϕ‖ is uniformly bounded in E0 by
Lemma 2 and therefore we may control the limit |E0| → ∞ in (24), i.e.

the r.h.s. goes as O
(

1
‖E0‖

)
. This concludes the proof of the Main Theorem

for the case b0 (τ) 6= 0 .
We now turn to the case when P is a finite dimensional projection and

b0 (τ )2 + c0 (τ )2 =: a2
0 6= 0. Actually by what has already been proved, it

would suffice to consider the case b0(τ ) = 0, c0(τ) 6= 0 only. However, we will
prove the claim for an arbitrary finite dimensional P not necessarily being
the projection onto the space spanned by the bound states of H .

We start with two preliminary considerations. First, by the Campbell-
Hausdorff formula

exp−ib (τ) z · exp ic (τ ) pz = exp
i

2
b (τ) c (τ ) · exp i (c (τ ) pz − b (τ) z) . (26)

Now there is always an s such that

c (τ ) pz − b (τ) z = E0a0 (z cos s+ pz sin s) = E0a0Z(s) . (27)

Introducing the unitary operator W (s) = exp is
2

(p2
z + z2) we may perform a

Bogoliubov transformation on z

W (s) zW (s)−1 = Z(s) . (28)

9



Secondly, let ϕn(1 ≤ n ≤ N) be an orthonormal basis for the range of P.
Then

‖P exp−ib (τ ) z · exp ic (τ) pzϕ‖2

=
N∑

n=1

|〈ϕn, exp iE0a0Z(s) · ϕ〉|2

=

N∑

n=1

∣∣〈W (s)−1ϕn, exp iE0a0z ·W (s)−1ϕ
〉∣∣2

=

N∑

n=1

∣∣∣∣
∫
d~x(W (s)−1ϕn) (~x)

(
W (s)−1ϕ

)
(~x) exp iE0a0z

∣∣∣∣
2

.

Since (W (s)−1ϕn) (~x) (W (s)−1ϕ) (~x) ∈ L1 (R3) the right hand side of the last
equation vanishes in the limit |E0| → ∞ by the Riemann-Lebesgue theorem,
which concludes the proof of the Main Theorem.�

Now we turn to the case when b0 (τ ) = c0 (τ ) = 0. Notice, that if we
consider linearly polarized light, then for the most common pulse shapes like
for instance a static envelope, trapezoidal envelope, sine-squared envelope
etc. [29] the extreme high frequency limit, i.e. ω → ∞ leads to b0 (τ ) =
c0 (τ) = 0. This limit is needed in order to apply the analysis of Gavrila and
coworkers [20], which provides so far the most profound “explanation” for
the occurrence of stabilization.

We prove the Second Main Theorem:

Theorem 4 Let b0 (τ ) = c0 (τ) = 0. Denote

p(τ ) = lim
|E0|→∞

P (ψ) = ‖(1 − P ) exp −iτH0 · ψ‖2 . (29)

If H has only one bound state (i.e. if P is one dimensional), then p(τ) > 0
for all τ > 0.

Furthermore p(τ) < 1 (at least) for all τ ∈ [0, τ ∗], where

τ ∗ = π
[
〈H0ψ,H0ψ〉 − 〈ψ,H0ψ〉2

]−1/2
.
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Proof: We consider the survival probability q(τ) =
∣∣(ψ, e−iτH0ψ)

∣∣2 and
observe that p(τ) = 1− q(τ) if there is only one bound state. We prove that
q(τ) < 1 for all τ > 0. Note that by Schwarz inequality the bound q(τ) ≤ 1
is trivial. Now

(
ψ, e−iτH0ψ

)
=

∫ ∞

0

e−iλτdµψ(λ) ≡ µ̂ψ(τ),

where µψ is the (nonnegative, absolute continuous) spectral measure associ-
ated with H0,

µψ((−∞, λ]) =

{ ∫
|~p|≤

√
2λ
|ψ̂(p)|2d~p, λ ≥ 0

0, λ < 0.

Obviously,
∫

R
dµψ(λ) = 1. It is well known (see e.g. [42]) that |µ̂ψ(τ )| < 1

for all τ > 0 when the measure µψ is absolutely continuous.
The second part of the theorem follows from the estimate of Pfeifer [43].

�

We note that due to the Paley-Wiener theorem µ̂ψ(τ) cannot have com-
pact support. Therefore the inequality p(τ) < 1 must be valid for some
suitable arbitrary large τ > 0. On the other hand, it is well known that
|µ̂ψ(τ)| ≤ Cτ−N for arbitrary N and all large τ > 0, since the spectrum of
H0 is purely transient absolute continuous (see for instance [44]). This means
that in case H has only one bound state, say, the ionization probability p(τ )
will tend to one faster than any power inverse power of τ for τ → ∞ .

Example 1 The easiest pulse shape for which theorem 4 applies is f(t) =
cos(ωt), since then c0(τ = 2πn

ω
) = b0(τ = 2πn

ω
) = 0. As a concrete example

for the potential we choose the Coulomb potential V (~x) = −1/|~x|. The nor-
malized wave function of the ground state in the momentum representation
is given by (see for instance [45])

Ψ(~p) =

√
8

π

1

(1 + p2)2
,

such that the survival probability in this case reads

q(τ) =

(
32

π

)2

∣∣∣∣∣∣

∞∫

0

dp p2 e−iτ
p2

2

(1 + p2)4

∣∣∣∣∣∣

2

=
64

π

∣∣∣∣U(
3

2
,−3

2
;
iτ

2
)

∣∣∣∣
2

.
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Here U(a, b; z) denotes a confluent hypergeometric function (see for instance
[46]). So for typical sub-picosecond pulses we obtain for instance q(τ =
400a.u.) = 2.45 10−6 and q(τ = 1000a.u.) = 1.63 10−7. Essential is here to
note that the survival probability is always non-vanishing and monotonically
decreasing in τ (see figure 1).

Example 2 We now take the potential to be the attracting point interac-
tion, often also called the delta potential in three dimensions, (see e.g. [47])
with coupling constant α > 0. This potential has the virtue that it possess
only one eigenstate

Ψ(~x) =

√
α

2π

e−α|~x|

|~x|
with energy −(α)2. In the momentum representation the wave function is
given by

Ψ(~p) =

√
α

π

1

(α2 + p2)

such that the survival probability turns out to be

qα(τ) =
16α2

π2

∣∣∣∣∣∣

∞∫

0

dp p2 e−iτ
p2

2

(α2 + p2)2

∣∣∣∣∣∣

2

=
1

π

∣∣∣∣U(
3

2
,
1

2
;
iτα2

2
)

∣∣∣∣
2

.

As figure 2 illustrates, the survival probability decreases monotonically with
increasing α for fixed pulse duration τ . The figure also shows, that for
increasing τ the survival probability decreases.

We may assume that the Hydrogen atom behaves with respect to the
energy variation qualitatively the same way as the point interaction. Then
this example indicates that one should expect that for sufficiently high Ry-
dberg states the survival probability q(τ) will be sufficiently close to 1 even
for times τ ≈ 1 ps.

Conclusion We have investigated the ionization probability in the ex-
treme intensity limit for three different situations. The first analysis presumes
that the classical momentum transfer b0(τ ) is non-vanishing and allows essen-
tially all common potentials. Since the condition b0(τ ) 6= 0 excludes a wide
range of possible pulses, we also studied separately a situation for which we
only demand that not both the classical momentum transfer b0(τ ) and the
total classical momentum transfer c0(τ) vanish simultaneously. In addition
we have to demand for this case that potential only possess a finite number of
bound states. This is similar to the situation in many numerical calculations,

12



in which one is also forced to introduce a cut-off at some level when projecting
onto bound states. In both cases we find that the ionization probability P for
any bound state of the Hamiltonian H = H0 + V for the field amplitude E0

going to infinity is going to one. This excludes in our opinion the possibility
of stabilization for these situations, apart from window stabilization.

Finally, we considered the situation in which b0(τ) = c0(τ) = 0 and find
indeed the possibility of stabilization. For the most common pulses, which
involve linearly polarized light, this case corresponds to the high frequency
limit of Gavrila and coworkers [20]. We conclude that our analysis is consis-
tent with the “high frequency picture” and that stabilization is only to be
expected in this latter case.
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Figure 1: Survival probability q(τ (a.u.)) after the time τ for the ground state
of the Hydrogen atom under the free time evolution.

Figure 2: Survival probability qα(τ (a.u.)) for fixed pulse duration τ = 200a.u.
dotted line, τ = 400a.u. dashed line, τ = 1000a.u. solid line, for the bound
state of the three dimensional delta potential under the free time evolution
as a function of the coupling α.
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