We continue our investigation concerning the question of whether atomic bound
states begin to stabilize in the ultra-intense field limit. The pulses
considered are essentially arbitrary, but we distinguish between three
situations. First the total classical momentum transfer is non-vanishing,
second not both the total classical momentum transfer and the total classical
displacement are vanishing together with the requirement that the potential has
a finite number of bound states and third both the total classical momentum
transfer and the total classical displacement are vanishing. For the first two
cases we rigorously prove, that the ionization probability tends to one when
the amplitude of the pulse tends to infinity and the pulse shape remains fixed.
In the third case the limit is strictly smaller than one. This case is also
related to the high frequency limit considered by Gavrila et al.Comment: 16 pages LateX, 2 figure