1,454 research outputs found

    Outer-Sphere Contributions to the Electronic Structure of Type Zero Copper Proteins

    Get PDF
    Bioinorganic canon states that active-site thiolate coordination promotes rapid electron transfer (ET) to and from type 1 copper proteins. In recent work, we have found that copper ET sites in proteins also can be constructed without thiolate ligation (called “type zero” sites). Here we report multifrequency electron paramagnetic resonance (EPR), magnetic circular dichroism (MCD), and nuclear magnetic resonance (NMR) spectroscopic data together with density functional theory (DFT) and spectroscopy-oriented configuration interaction (SORCI) calculations for type zero Pseudomonas aeruginosa azurin variants. Wild-type (type 1) and type zero copper centers experience virtually identical ligand fields. Moreover, O-donor covalency is enhanced in type zero centers relative that in the C112D (type 2) protein. At the same time, N-donor covalency is reduced in a similar fashion to type 1 centers. QM/MM and SORCI calculations show that the electronic structures of type zero and type 2 are intimately linked to the orientation and coordination mode of the carboxylate ligand, which in turn is influenced by outer-sphere hydrogen bonding

    Laboratory Characterization and Astrophysical Detection of Vibrationally Excited States of Vinyl Cyanide in Orion-KL

    Get PDF
    New laboratory data of CH2_2CHCN (vinyl cyanide) in its ground and vibrationally excited states at the microwave to THz domain allow searching for these excited state transitions in the Orion-KL line survey. Frequency-modulated spectrometers combined into a single broadband 50-1900 GHz spectrum provided measurements of CH2_2CHCN covering a spectral range of 18-1893 GHz, whose assignments was confirmed by Stark modulation spectra in the 18-40 GHz region and by ab-initio anharmonic force field calculations. For analyzing the emission lines of CH2_2CHCN species detected in Orion-KL we used the excitation and radiative transfer code (MADEX) at LTE conditions. The rotational transitions of the ground state of this molecule emerge from four cloud components of hot core nature which trace the physical and chemical conditions of high mass star forming regions in the Orion-KL Nebula. The total column density of CH2_2CHCN in the ground state is (3.0±\pm0.9)x1015^{15} cm2^{-2}. We report on the first interstellar detection of transitions in the v10=1/(v11=1,v15=1) dyad in space, and in the v11=2 and v11=3 states in Orion-KL. The lowest energy vibrationally excited states of vinyl cyanide such as v11=1 (at 328.5 K), v15=1 (at 478.6 K), v11=2 (at 657.8 K), the v10=1/(v11=1,v15=1) dyad (at 806.4/809.9 K), and v11=3 (at 987.9 K) are populated under warm and dense conditions, so they probe the hottest parts of the Orion-KL source. Column density and rotational and vibrational temperatures for CH2_2CHCN in their ground and excited states, as well as for the isotopologues, have been constrained by means of a sample of more than 1000 lines in this survey. Moreover, we present the detection of methyl isocyanide (CH3_3NC) for the first time in Orion-KL and a tentative detection of vinyl isocyanide (CH2_2CHNC) and give column density ratios between the cyanide and isocyanide isomers.Comment: 46 pages, 22 figures, 14 tables, 9 online table

    Di- and Trinuclear Mixed-Valence Copper Amidinate Complexes from Reduction of Iodine

    Get PDF
    Molecular examples of mixed-valence copper complexes through chemical oxidation are rare but invoked in the mechanism of substrate activation, especially oxygen, in copper-containing enzymes. To examine the cooperative chemistry between two metals in close proximity to each other we began studying the reactivity of a dinuclear Cu(I) amidinate complex. The reaction of [(2,6-Me2C6H3N)2C(H)]2Cu2, 1, with I2 in tetrahydrofuran (THF), CH3CN, and toluene affords three new mixed-valence copper complexes [(2,6-Me2C6H3N)2C(H)]2Cu2(μ2-I3)(THF)2, 2, [(2,6-Me2C6H3N)2C(H)]2Cu2(μ2-I) (NCMe)2, 3, and [(2,6-Me2C6H3N)2C(H)]3Cu3(μ3-I)2, 4, respectively. The first two compounds were characterized by UV-vis and electron paramagnetic resonance spectroscopies, and their molecular structure was determined by X-ray crystallography. Both di- and trinuclear mixed-valence intermediates were characterized for the reaction of compound 1 to compound 4, and the molecular structure of 4 was determined by X-ray crystallography. The electronic structure of each of these complexes was also investigated using density functional theory

    Explicit kinetic heterogeneity: mechanistic models for interpretation of labeling data of heterogeneous cell populations

    Get PDF
    Estimation of division and death rates of lymphocytes in different conditions is vital for quantitative understanding of the immune system. Deuterium, in the form of deuterated glucose or heavy water, can be used to measure rates of proliferation and death of lymphocytes in vivo. Inferring these rates from labeling and delabeling curves has been subject to considerable debate with different groups suggesting different mathematical models for that purpose. We show that the three models that are most commonly used are in fact mathematically identical and differ only in their interpretation of the estimated parameters. By extending these previous models, we here propose a more mechanistic approach for the analysis of data from deuterium labeling experiments. We construct a model of "kinetic heterogeneity" in which the total cell population consists of many sub-populations with different rates of cell turnover. In this model, for a given distribution of the rates of turnover, the predicted fraction of labeled DNA accumulated and lost can be calculated. Our model reproduces several previously made experimental observations, such as a negative correlation between the length of the labeling period and the rate at which labeled DNA is lost after label cessation. We demonstrate the reliability of the new explicit kinetic heterogeneity model by applying it to artificially generated datasets, and illustrate its usefulness by fitting experimental data. In contrast to previous models, the explicit kinetic heterogeneity model 1) provides a mechanistic way of interpreting labeling data; 2) allows for a non-exponential loss of labeled cells during delabeling, and 3) can be used to describe data with variable labeling length

    Ocean acidification affects marine chemical communication by changing structure and function of peptide signalling molecules

    Get PDF
    Ocean acidification is a global challenge that faces marine organisms in the near future with a predicted rapid drop in pH of up to 0.4 units by the end of this century. Effects of the change in ocean carbon chemistry and pH on the development, growth and fitness of marine animals are well documented. Recent evidence also suggests that a range of chemically mediated behaviours and interactions in marine fish and invertebrates will be affected. Marine animals use chemical cues, for example, to detect predators, for settlement, homing and reproduction. But while effects of high CO₂ conditions on these behaviours are described across many species, little is known about the underlying mechanisms, particularly in invertebrates. Here we investigate the direct influence of future oceanic pH conditions on the structure and function of three peptide signalling molecules with an interdisciplinary combination of methods. NMR spectroscopy and quantum chemical calculations were used to assess the direct molecular influence of pH on the peptide cues and we tested the functionality of the cues in different pH conditions using behavioural bioassays with shore crabs (Carcinus maenas) as a model system. We found that peptide signalling cues are susceptible to protonation in future pH conditions, which will alter their overall charge. We also show that structure and electrostatic properties important for receptor-binding differ significantly between the peptide forms present today and the protonated signalling peptides likely to be dominating in future oceans. The bioassays suggest an impaired functionality of the signalling peptides at low pH. Physiological changes due to high CO₂ conditions were found to play a less significant role in influencing the investigated behaviour. From our results we conclude that the change of charge, structure and consequently function of signalling molecules presents one possible mechanism to explain altered behaviour under future oceanic pH conditions

    A little respect: four case studies of HCI’s disregard for other disciplines

    Get PDF
    HCI research often demonstrates lack of respect for other disciplines, evidenced by the way work from those disciplines are cited in CHI papers. We present 4 case studies that demonstrate; 1) that HCI researchers sometimes misunderstand and misrepresent work from other disciplines, and 2) how initial misrepresentations can become ‘accepted wisdom ’within HCI. This disregard for other disciplines leads to errors such as authors citing work to support ‘facts’ precisely opposite to those demonstrated by the cited literature. We conclude with recommendations for authors, editors, publishers and readers on how to reduce the risk of such failures

    NEOWISE Studies of Spectrophotometrically Classified Asteroids: Preliminary Results

    Get PDF
    The NEOWISE dataset offers the opportunity to study the variations in albedo for asteroid classification schemes based on visible and near-infrared observations for a large sample of minor planets. We have determined the albedos for nearly 1900 asteroids classified by the Tholen, Bus and Bus-DeMeo taxonomic classification schemes. We find that the S-complex spans a broad range of bright albedos, partially overlapping the low albedo C-complex at small sizes. As expected, the X-complex covers a wide range of albedos. The multi-wavelength infrared coverage provided by NEOWISE allows determination of the reflectivity at 3.4 and 4.6 μ\mum relative to the visible albedo. The direct computation of the reflectivity at 3.4 and 4.6 μ\mum enables a new means of comparing the various taxonomic classes. Although C, B, D and T asteroids all have similarly low visible albedos, the D and T types can be distinguished from the C and B types by examining their relative reflectance at 3.4 and 4.6 μ\mum. All of the albedo distributions are strongly affected by selection biases against small, low albedo objects, as all objects selected for taxonomic classification were chosen according to their visible light brightness. Due to these strong selection biases, we are unable to determine whether or not there are correlations between size, albedo and space weathering. We argue that the current set of classified asteroids makes any such correlations difficult to verify. A sample of taxonomically classified asteroids drawn without significant albedo bias is needed in order to perform such an analysis.Comment: Accepted to Ap

    Search for LBV Candidates in the M33 Galaxy

    Full text link
    A total of 185 luminous blue variable (LBV) candidates with V < 18.5 and B-V < 0.35 are selected based on the photometrical Survey of Local Group Galaxies made by P. Massey et al. 2006. The candidates were selected using aperture photometry of H-alpha images. The primary selection criterion is that the prospective candidate should be a blue star with H-aplha emission. In order not to miss appreciably reddened LBV candidates, we compose an additional list of 25 presumably reddened (0.35 < B-V < 1.2, V < 18.5) emission star candidates. A comparison with the list of known variables in the M33 galaxy showed 29% of our selected candidates to be photometrically variable. We also find our list to agree well with the lists of emission-line objects obtained in earlier papers using different methods.Comment: 6 figure

    A revised asteroid polarization-albedo relationship using WISE/NEOWISE data

    Get PDF
    We present a reanalysis of the relationship between asteroid albedo and polarization properties using the albedos derived from the Wide-field Infrared Survey Explorer. We find that the function that best describes this relation is a three-dimensional linear fit in the space of log(albedo)-log(polarization slope)-log(minimum polarization). When projected to two dimensions the parameters of the fit are consistent with those found in previous work. We also define p* as the quantity of maximal polarization variation when compared with albedo and present the best fitting albedo-p* relation. Some asteroid taxonomic types stand out in this three-dimensional space, notably the E, B, and M Tholen types, while others cluster in clumps coincident with the S- and C-complex bodies. We note that both low albedo and small (D<30 km) asteroids are under-represented in the polarimetric sample, and we encourage future polarimetric surveys to focus on these bodies.Comment: 16 pages, Accepted to Ap
    corecore