951 research outputs found

    The circulation of Prince William Sound

    Get PDF
    There are no author-identified significant results in this report

    The Nature of the Dense Core Population in the Pipe Nebula: Thermal Cores Under Pressure

    Get PDF
    In this paper we present the results of a systematic investigation of an entire population of starless dust cores within a single molecular cloud. Analysis of extinction data shows the cores to be dense objects characterized by a narrow range of density. Analysis of C18O and NH3 molecular-line observations reveals very narrow lines. The non-thermal velocity dispersions measured in both these tracers are found to be subsonic for the large majority of the cores and show no correlation with core mass (or size). Thermal pressure is thus the dominate source of internal gas pressure and support for most of the core population. The total internal gas pressures of the cores are found to be roughly independent of core mass over the entire range of the core mass function (CMF) indicating that the cores are in pressure equilibrium with an external source of pressure. This external pressure is most likely provided by the weight of the surrounding Pipe cloud within which the cores are embedded. Most of the cores appear to be pressure confined, gravitationally unbound entities whose nature, structure and future evolution are determined by only a few physical factors which include self-gravity, the fundamental processes of thermal physics and the simple requirement of pressure equilibrium with the surrounding environment. The observed core properties likely constitute the initial conditions for star formation in dense gas. The entire core population is found to be characterized by a single critical Bonnor-Ebert mass. This mass coincides with the characteristic mass of the Pipe CMF indicating that most cores formed in the cloud are near critical stability. This suggests that the mass function of cores (and the IMF) has its origin in the physical process of thermal fragmentation in a pressurized medium.Comment: To appear in the Astrophysical Journa

    The circulation of Prince William Sound

    Get PDF
    There are no author-identified significant results in this report

    The International DOVETAIL Program

    Get PDF
    The "Deep Ocean Ventilation Through Antarctic Intermediate Layers"(DOVETAIL) program is an international field and modeling study of thedense deep and bottom waters of the northwestern Weddell Sea. Aprimary program goal has been to estimate the volume transport andpathways of these waters, long considered to be a major source ofAntarctic Bottom Water, as they escape from the Weddell Sea over andthrough the South Scotia Ridge into the Scotia Sea. Corollary goalsare to assess modification of the stratification during passage throughthe narrow, steep-sided and irregular channels that transect the Ridge.The program has evolved, since its start in 1997 as a primarily process-oriented project, into a multiyear observational study of the northwesternWeddell Sea-southern Scotia Sea including the Weddell-ScotiaConfluence region. An additional program goal has, therefore, becomethe estimation of interannual variability in the physical system. Thisvolume contains a collection of papers that present recent field andmodel-derived results from the DOVETAIL program

    Molecular basis for resistance of acanthamoeba tubulins to all major classes of antitubulin compounds

    Get PDF
    Tubulin is essential to eukaryotic cells and is targeted by several antineoplastics, herbicides, and antimicrobials. We demonstrate that Acanthamoeba spp. are resistant to five antimicrotubule compounds, unlike any other eukaryote studied so far. Resistance correlates with critical amino acid differences within the inhibitor binding sites of the tubulin heterodimers

    Gravity on a parallelizable manifold. Exact solutions

    Full text link
    The wave type field equation \square \vt^a=\la \vt^a, where \vt^a is a coframe field on a space-time, was recently proposed to describe the gravity field. This equation has a unique static, spherical-symmetric, asymptotically-flat solution, which leads to the viable Yilmaz-Rosen metric. We show that the wave type field equation is satisfied by the pseudo-conformal frame if the conformal factor is determined by a scalar 3D-harmonic function. This function can be related to the Newtonian potential of classical gravity. So we obtain a direct relation between the non-relativistic gravity and the relativistic model: every classical exact solution leads to a solution of the field equation. With this result we obtain a wide class of exact, static metrics. We show that the theory of Yilmaz relates to the pseudo-conformal sector of our construction. We derive also a unique cosmological (time dependent) solution of the described type.Comment: Latex, 17 page

    Nothing to hide: An X-ray survey for young stellar objects in the Pipe Nebula

    Full text link
    We have previously analyzed sensitive mid-infrared observations to establish that the Pipe Nebula has a very low star-formation efficiency. That study focused on YSOs with excess infrared emission (i.e, protostars and pre-main sequence stars with disks), however, and could have missed a population of more evolved pre-main sequence stars or Class III objects (i.e., young stars with dissipated disks that no longer show excess infrared emission). Evolved pre-main sequence stars are X-ray bright, so we have used ROSAT All-Sky Survey data to search for diskless pre-main sequence stars throughout the Pipe Nebula. We have also analyzed archival XMM-Newton observations of three prominent areas within the Pipe: Barnard 59, containing a known cluster of young stellar objects; Barnard 68, a dense core that has yet to form stars; and the Pipe molecular ring, a high-extinction region in the bowl of the Pipe. We additionally characterize the X-ray properties of YSOs in Barnard 59. The ROSAT and XMM-Newton data provide no indication of a significant population of more evolved pre-main sequence stars within the Pipe, reinforcing our previous measurement of the Pipe's very low star formation efficiency.Comment: Accepted for publication in Ap

    On the width of the equatorial deep jets

    Get PDF
    The equatorial deep jets (EDJ) are a striking feature of the equatorial ocean circulation. In the Atlantic Ocean, the EDJ are associated with a vertical scale of between 300 and 700 m, a time scale of roughly 4.5 years and upward energy propagation to the surface. It has been found that the meridional width of the EDJ is roughly 1.5 times larger than expected based on their vertical scale. Here we use a shallow water model for a high order baroclinic vertical normal mode to argue that mixing of momentum along isopycnals can explain the enhanced width. A lateral eddy viscosity of 300 m2 s−1 10 is found to be sufficient to account for the width implied by observations

    The nature of the dense core population in the pipe nebula: core and cloud kinematics from C18O observations

    Full text link
    We present molecular-line observations of 94 dark cloud cores identified in the Pipe nebula through near-IR extinction mapping. Using the Arizona Radio Observatory 12m telescope, we obtained spectra of these cores in the J=1-0 transition of C18O. We use the measured core parameters, i.e., antenna temperature, linewidth, radial velocity, radius and mass, to explore the internal kinematics of these cores as well as their radial motions through the larger molecular cloud. We find that the vast majority of the dark extinction cores are true cloud cores rather than the superposition of unrelated filaments. While we identify no significant correlations between the core's internal gas motions and the cores' other physical parameters, we identify spatially correlated radial velocity variations that outline two main kinematic components of the cloud. The largest is a 15pc long filament that is surprisingly narrow both in spatial dimensions and in radial velocity. Beginning in the Stem of the Pipe, this filament displays uniformly small C18O linewidths (dv~0.4kms-1) as well as core to core motions only slightly in excess of the gas sound speed. The second component outlines what appears to be part of a large (2pc; 1000 solar mass) ring-like structure. Cores associated with this component display both larger linewidths and core to core motions than in the main cloud. The Pipe Molecular Ring may represent a primordial structure related to the formation of this cloud.Comment: Accepted to ApJ. 14 pages, 11 figures. Complete table at end of documen

    Quantitative Evidence for an Intrinsic Age Spread in the Orion Nebula Cluster

    Full text link
    Aims. We present a study of the distribution of stellar ages in the Orion Nebula Cluster (ONC) based on accurate HST photometry taken from the HST Treasury Program observations of the ONC utilizing the most recent estimate of the cluster's distance (Menten et al. 2007). We investigate the presence of an intrinsic age spread in the region and a possible trend of age with the spatial distribution. Methods. We estimate the extinction and accretion luminosity towards each source by performing synthetic photometry on an empirical calibration of atmospheric models (Da Rio et al. 2010) using the package Chorizos (Maiz-Apellaniz 2004). The position of the sources in the HR-diagram is compared with different theoretical isochrones to estimate the mean cluster age and age dispersion. Through Monte Carlo simulations we quantify the amount of intrinsic age spread in the region, taking into account uncertainties on the distance, spectral type, extinction, unresolved binaries, accretion and photometric variability. Results. According to Siess et al. (2000) evolutionary models the mean age of the Cluster is 2.2 Myr with a scatter of few Myrs. With Monte Carlo simulations we find that the observed age spread is inconsistent with a coeval stellar population, but is in agreement with a star formation activity between 1.5 and 3.5 Myrs. We also observe light evidence for a trend of ages with spatial distribution.Comment: 12 pages, 12 figures, Accepted for publication in Astronomy and Astrophysic
    corecore