225 research outputs found

    Engineering magnetic domain-wall structure in permalloy nanowires

    Get PDF
    Using Lorentz transmission electron microscopy we investigate the behavior of domain walls pinned at non-topographic defects in Cr(3 nm)/Permalloy(10 nm)/Cr(5 nm) nanowires of width 500 nm. The pinning sites consist of linear defects where magnetic properties are modified by a Ga ion probe with diameter ~ 10 nm using a focused ion beam microscope. We study the detailed change of the modified region (which is on the scale of the focused ion spot) using electron energy loss spectroscopy and differential phase contrast imaging on an aberration (Cs) corrected scanning transmission electron microscope. The signal variation observed indicates that the region modified by the irradiation corresponds to ~ 40-50 nm despite the ion probe size of only 10 nm. Employing the Fresnel mode of Lorentz transmission electron microscopy, we show that it is possible to control the domain wall structure and its depinning strength not only via the irradiation dose but also the line orientation.Comment: Accepted for publication in Physical Review Applie

    The Ammount of Interstellar Carbon Locked in Solid Hydrogenated Amorphous Carbon

    Full text link
    We review the literature and present new experimental data to determine the amount of carbon likely to be locked in form of solid hydrogenated amorphous carbon (HAC) grains. We conclude on the basis of a thorough analysis of the intrinsic strength of the C-H stretching band at 3.4 micron that between 10 and 80 ppM H of carbon is in the form of HAC grains. We show that it is necessary to know the level of hydrogenation (H/C) of the interstellar HAC to determine more precisely the amount of carbon it ties up. We present optical constants, photoluminescence spectroscopy, and IR absorption spectroscopy for a particular HAC sample that is shown to have a 3.4 micron absorption feature that is quantatively consistent with that observed in the diffuse interstellar medium.Comment: This paper is 14 pages long with 5 figures and will appear in the 1 December 1999 issue of Ap

    Application of monoclonal antibodies in quantifying fungal growth dynamics during aerobic spoilage of silage

    Get PDF
    Proliferation of filamentous fungi following ingress of oxygen to silage is an important cause of dry matter losses, resulting in significant waste. In addition, the production of mycotoxins by some filamentous fungi pose a risk to animal health through mycotoxicosis. Quantitative assessment of fungal growth in silage, through measurement of ergosterol content, colony forming units or temperature increase are limiting in representing fungal growth dynamics during aerobic spoilage due to being deficient in either representing fungal biomass or being able to identify specific genera. Here, we conducted a controlled environment aerobic exposure experiment to test the efficacy of a monoclonal antibody-based enzyme linked immunosorbent assay (ELISA) to detect the proliferation of fungal biomass in six silage samples. We compared this to temperature which has been traditionally deployed in such experiments and on-farm to detect aerobic deterioration. In addition, we quantified ergosterol, a second marker of fungal biomass. At 8 d post aerobic exposure, the ergosterol and ELISA methods indicated an increase in fungal biomass in one of the samples with a temperature increase observed after 16 d. A comparison of the methods with Pearson’s correlation coefficient showed a positive association between temperature and ergosterol and both markers of fungal biomass. This work indicates that the technology has potential to be used as an indicator of microbial degradation in preserved forage. Consequently, if developed as an on farm technique this could inform forage management decisions made by farmers, with the goal of decreasing dry matter losses, improving resource and nutrient efficiency and reducing risks to animal health

    M-Band Spectra of Dust Embedded Sources at the Galactic Center

    Full text link
    The goal of the present paper is to investigate the circumstellar material around the brightest dust-enshrouded sources in the central stellar cluster of the Milky Way. Observations have been carried out at the European Southern Observatory's Very Large Telescope on Paranal, Chile. We have used the long wavelength (LWS3) low resolution (LR) spectroscopic mode of the ISAAC camera at the VLT in the spectral range of the M filter from 4.4micron to 5.1micron. The use of a slit width of 0.6" implied a spectral resolution of R=l/Dl=800 (Dv=375 km/s). These observations resulted in M-band spectra of 15 bright sources in the central stellar cluster of the Milky Way. In addition to gaseous 12^CO (4.666 micron) and 13^CO (4.77 micron) vibration-rotational absorptions, we detect a strong absorption due to a mixture of polar and apolar CO ice (centered at 4.675 micron). In the shorter wavelength absorption wing there is an absorption feature due to XCN at 4.62 micron. The XCN absorption is strongest toward the M2 supergiant IRS7. We find that the extinctions due to material traced by the CO ice and the CO gas absorptions may be of comparable importance. Using the spectra of IRS2L and IRS16C we perform a first order correction of the line of sight absorption due to CO-ice and 13^CO gas. In combination with published hydrogen number density estimates from sub-mm CO(7-6) and FIR [OI] line data we obtain gas masses of the circumstellar shells of the order of 10^-3 and 10^-2 solar masses. This implies that in future spectra taken at high spectral and angular resolution the bright and dust embedded Galactic Center sources should show a substantial line absorption due to source intrinsic absorption.Comment: 23 pages, 9 figures, Accepted for publication in Ap

    Hydrocarbon Dust Absorption in Seyfert Galaxies and ULIRGs

    Full text link
    We present new spectroscopic observations of the 3.4 micron absorption feature in the Seyfert galaxies, NGC1068 and NGC7674, and the ultraluminous infrared galaxy, IRAS08572+3915. A signature of C-H bonds in aliphatic hydrocarbons, the 3.4 micron feature indicates the presence of organic material in Galactic and extragalactic dust. Here we compare the 3.4 micron feature in all the galaxies in which it has been detected. In several cases, the signal-to-noise ratio and spectral resolution permit a detailed examination of the feature profile, something which has rarely been attempted in extragalactic lines of sight. The 3.4 micron band in these galaxies closely resembles that seen in the Galactic diffuse ISM and in newly-formed dust in a protoplanetary nebula. The similarity implies a common carrier for the carbonaceous component of dust, and one which is resistant to processing in the interstellar and/or circumnuclear medium. We also examine the mid-IR spectrum of NGC1068, because absorption bands in the 5-8 micron region further constrain the chemistry of the 3.4 micron band carrier. While weak features like those present in the mid-IR spectrum of diffuse dust towards the Galactic center would be undetectable in NGC1068, the strong bands found in the spectra of many proposed dust analog materials are clearly absent, eliminating certain candidates and production mechanisms for the carrier. The absence of strong absorption features at 5-8 microns is also consistent with the interpretation that the similarity in the 3.4 micron feature in NGC1068 to that in Galactic lines of sight reflects real chemical similarity in the carbonaceous dust.Comment: 30 pages, 8 figures (preprint style), ApJ accepte

    VLT L-band mapping of the Galactic Center IRS 3-IRS 13 region Evidence for new Wolf-Rayet type stars

    Full text link
    This paper presents L-band ISAAC and NAOS/CONICA (VLT) spectroscopic observations of the IRS~3-IRS~13 Galactic Center region. The ISAAC data allowed us to build the first spectroscopic data cube of the region in the L-band domain corrected for the foreground extinction. Maps of the water ice and hydrocarbon absorption line strength were then derived. These maps are important diagnostics of the interstellar and circumstellar medium (resp. ISM and CSM). They support our previous results that the absorption features are most probably occuring in the local Galactic center medium and can be associated with the individual sources. Moreover, turbulence seems to affect the studied region of the minispiral which appears like a mixture of a dense and diffuse medium. The Br alpha and Pf gamma emission line maps allowed us to find three sources with broad lines corresponding to a FWHM deconvolved line width of about 1100 km/s and moving towards us with a radial velocity of about -300km/s. These sources are most probably new Wolf-Rayet type stars located in projection to the north and west of IRS 3. Their derived radial velocities and proper motions show that only two of them might belong to the two rotating disks of young stars reported by Genzel et al. (2003) and Levin & Beloborodov (2003)...Comment: 12 pages, 11 figures and 2 tables. Accepted in A&

    Detection of Central Visual Field Defects in Early Glaucomatous Eyes: comparison of Humphrey and Octopus perimetry

    Get PDF
    Purpose: To compare the detection rate of central visual field defect (CVFD) between the 30-degree Octopus G1 program (Dynamic strategy) and the HFA 10–2 SITA-Standard test in early glaucoma eyes not showing any CVFD on the HFA 24–2 SITA-Standard test. Methods: One eye of 41 early glaucoma patients without CVFD in the central 10 on HFA 24–2 test was tested with both the HFA 10–2 test and the Octopus G1 program 15 minutes apart, in random order. The primary outcome measure was the comparison of CVFD detection rates. Secondary outcome measures comprised the agreement in detecting CVFD, and the comparison of test durations and the numbers of depressed test points outside the central 10-degree area between the HFA 24–2 test and the Octopus G1 program. Results: The mean age of the population was 65.2±10.1 years, and the mean deviation with HFA 24–2 was -3.26±2.6 dB. The mean test duration was not significantly different between the tests (p = 0.13). A CVFD was present in 33 (80.4%) HFA 10–2 test and in 23 (56.0%) Octopus G1 tests (p = 0.002). The overall agreement between the HFA 10–2 and Octopus G1 examinations in classifying eyes as having or not having CVFD was moderate (Cohen’s kappa 0.47). The Octopus G1 program showed 69.6% sensitivity and 100% specificity to detect CVFD in eyes where the HFA 10–2 test revealed a CVFD. The number of depressed test points (p<5%) outside the central 10 area detected with the Octopus G1 program (19.68±10.6) was significantly higher than that detected with the HFA 24–2 program (11.95±5.5, p<0.001). Conclusion: Both HFA 10–2 and Octopus G1programs showed CVFD not present at HFA 24–2 test although the agreement was moderate. The use of a single Octopus G1 examination may represent a practical compromise for the assessment of both central and peripheral visual field up to 30 eccentricity without any additional testing and increasing the total investigation time
    • 

    corecore