310 research outputs found

    Scaling metagenome sequence assembly with probabilistic de Bruijn graphs

    Full text link
    Deep sequencing has enabled the investigation of a wide range of environmental microbial ecosystems, but the high memory requirements for {\em de novo} assembly of short-read shotgun sequencing data from these complex populations are an increasingly large practical barrier. Here we introduce a memory-efficient graph representation with which we can analyze the k-mer connectivity of metagenomic samples. The graph representation is based on a probabilistic data structure, a Bloom filter, that allows us to efficiently store assembly graphs in as little as 4 bits per k-mer, albeit inexactly. We show that this data structure accurately represents DNA assembly graphs in low memory. We apply this data structure to the problem of partitioning assembly graphs into components as a prelude to assembly, and show that this reduces the overall memory requirements for {\em de novo} assembly of metagenomes. On one soil metagenome assembly, this approach achieves a nearly 40-fold decrease in the maximum memory requirements for assembly. This probabilistic graph representation is a significant theoretical advance in storing assembly graphs and also yields immediate leverage on metagenomic assembly

    Toll-like receptor gene variants and bacterial vaginosis among HIV-1 infected and uninfected African women.

    Get PDF
    Bacterial vaginosis (BV) is a common vaginal syndrome associated with altered microflora that increases the risk of preterm delivery and acquisition of sexually transmitted diseases. The cause of BV is unknown although toll-like receptors (TLRs), that are central to innate immune responses, may be important. We evaluated associations between TLR SNPs and BV among HIV-1 infected and uninfected African women. Logistic regression was used to assess associations between SNPs (N=99) in TLRs 2-4, 7-9 and BV (as classified by Nugent's criteria). Among HIV-1 uninfected women, TLR7 rs5743737 and TLR7 rs1634323 were associated with a decreased risk of BV, whereas TLR7 rs179012 was associated with an increased risk. TLR2 SNP rs3804099 was associated with a decreased risk of BV among HIV-1 infected women. Our findings indicate that there may be differences in TLR association with BV among HIV-1 infected and HIV-1 uninfected women

    Microbiome Composition and Function Drives Wound-Healing Impairment in the Female Genital Tract

    Get PDF
    The mechanism(s) by which bacterial communities impact susceptibility to infectious diseases, such as HIV, and maintain female genital tract (FGT) health are poorly understood. Evaluation of FGT bacteria has predominantly been limited to studies of species abundance, but not bacterial function. We therefore sought to examine the relationship of bacterial community composition and function with mucosal epithelial barrier health in the context of bacterial vaginosis (BV) using metaproteomic, metagenomic, and in vitro approaches. We found highly diverse bacterial communities dominated by Gardnerella vaginalis associated with host epithelial barrier disruption and enhanced immune activation, and low diversity communities dominated by Lactobacillus species that associated with lower Nugent scores, reduced pH, and expression of host mucosal proteins important for maintaining epithelial integrity. Importantly, proteomic signatures of disrupted epithelial integrity associated with G. vaginalis-dominated communities in the absence of clinical BV diagnosis. Because traditional clinical assessments did not capture this, it likely represents a larger underrepresented phenomenon in populations with high prevalence of G. vaginalis. We finally demonstrated that soluble products derived from G. vaginalis inhibited wound healing, while those derived from L. iners did not, providing insight into functional mechanisms by which FGT bacterial communities affect epithelial barrier integrity

    Factors affecting droplet size distributions produced in dispersed phase mixers

    Get PDF
    Journal ArticleDroplet size distributions were determined by stabilizing in gelatin and measurement of the distributions by means of computerized image analysis. Several variables that affect droplet sizes were studied and the resulting size distributions were modeled via a population balance equation. Key parameters in the model were related to the physical properties and operating conditions of the systems examined using a multiple linear approach

    The rise and fall of methanotrophy following a deepwater oil-well blowout

    Get PDF
    The blowout of the Macondo oil well in the Gulf of Mexico in April 2010 injected up to 500,000 tonnes of natural gas, mainly methane, into the deep sea1. Most of the methane released was thought to have been consumed by marine microbes between July and August 20102, 3. Here, we report spatially extensive measurements of methane concentrations and oxidation rates in the nine months following the spill. We show that although gas-rich deepwater plumes were a short-lived feature, water column concentrations of methane remained above background levels throughout the rest of the year. Rates of microbial methane oxidation peaked in the deepwater plumes in May and early June, coincident with a rapid rise in the abundance of known and new methane-oxidizing microbes. At this time, rates of methane oxidation reached up to 5,900 nmol l−1 d−1—the highest rates documented in the global pelagic ocean before the blowout4. Rates of methane oxidation fell to less than 50 nmol l−1 d−1 in late June, and continued to decline throughout the remainder of the year. We suggest the precipitous drop in methane consumption in late June, despite the persistence of methane in the water column, underscores the important role that physiological and environmental factors play in constraining the activity of methane-oxidizing bacteria in the Gulf of Mexico

    Empirical Distributions of F-ST from Large-Scale Human Polymorphism Data

    Get PDF
    Studies of the apportionment of human genetic variation have long established that most human variation is within population groups and that the additional variation between population groups is small but greatest when comparing different continental populations. These studies often used Wright’s FST that apportions the standardized variance in allele frequencies within and between population groups. Because local adaptations increase population differentiation, high-FST may be found at closely linked loci under selection and used to identify genes undergoing directional or heterotic selection. We re-examined these processes using HapMap data. We analyzed 3 million SNPs on 602 samples from eight worldwide populations and a consensus subset of 1 million SNPs found in all populations. We identified four major features of the data: First, a hierarchically FST analysis showed that only a paucity (12%) of the total genetic variation is distributed between continental populations and even a lesser genetic variation (1%) is found between intra-continental populations. Second, the global FST distribution closely follows an exponential distribution. Third, although the overall FST distribution is similarly shaped (inverse J), FST distributions varies markedly by allele frequency when divided into non-overlapping groups by allele frequency range. Because the mean allele frequency is a crude indicator of allele age, these distributions mark the time-dependent change in genetic differentiation. Finally, the change in mean-FST of these groups is linear in allele frequency. These results suggest that investigating the extremes of the FST distribution for each allele frequency group is more efficient for detecting selection. Consequently, we demonstrate that such extreme SNPs are more clustered along the chromosomes than expected from linkage disequilibrium for each allele frequency group. These genomic regions are therefore likely candidates for natural selection

    Permafrost meta-omics and climate change

    Get PDF
    Permanently frozen soil, or permafrost, covers a large portion of the Earth's terrestrial surface and represents a unique environment for cold-adapted microorganisms. As permafrost thaws, previously protected organic matter becomes available for microbial degradation. Microbes that decompose soil carbon produce carbon dioxide and other greenhouse gases, contributing substantially to climate change. Next-generation sequencing and other -omics technologies offer opportunities to discover the mechanisms by which microbial communities regulate the loss of carbon and the emission of greenhouse gases from thawing permafrost regions. Analysis of nucleic acids and proteins taken directly from permafrost-associated soils has provided new insights into microbial communities and their functions in Arctic environments that are increasingly impacted by climate change. In this article we review current information from various molecular -omics studies on permafrost microbial ecology and explore the relevance of these insights to our current understanding of the dynamics of permafrost loss due to climate change

    Ripples in a pond: Do social work students need to learn about terrorism?

    Get PDF
    In the face of heightened awareness of terrorism, however it is defined, the challenges for social work are legion. Social work roles may include working with the military to ensure the well-being of service-men and women and their families when bereaved or injured, as well as being prepared to support the public within the emergency context of an overt act of terrorism. This paper reviews some of the literature concerning how social work responds to confl ict and terrorism before reporting a smallscale qualitative study examining the views of social work students, on a qualifying programme in the UK, of terrorism and the need for knowledge and understanding as part of their education

    Allelic polymorphism in the T cell receptor and its impact on immune responses

    Get PDF
    In comparison to human leukocyte antigen (HLA) polymorphism, the impact of allelic sequence variation within T cell receptor (TCR) loci is much less understood. Particular TCR loci have been associated with autoimmunity, but the molecular basis for this phenomenon is undefined. We examined the T cell response to an HLA-B*3501-restricted epitope (HPVGEADYFEY) from Epstein-Barr virus (EBV), which is frequently dominated by a TRBV9*01 public TCR (TK3). However, the common allelic variant TRBV9*02, which differs by a single amino acid near the CDR2β loop (Gln55→His55), was never used in this response. The structure of the TK3 TCR, its allelic variant, and a nonnaturally occurring mutant (Gln55→Ala55) in complex with HLA-B*3501 revealed that the Gln55→His55 polymorphism affected the charge complementarity at the TCR-peptide-MHC interface, resulting in reduced functional recognition of the cognate and naturally occurring variants of this EBV peptide. Thus, polymorphism in the TCR loci may contribute toward variability in immune responses and the outcome of infection
    corecore