1,217 research outputs found
Concordant cues in faces and voices: testing the backup signal hypothesis
Information from faces and voices combines to provide multimodal signals about a person. Faces and voices may offer redundant, overlapping (backup signals), or complementary information (multiple messages). This article reports two experiments which investigated the extent to which faces and voices deliver concordant information about dimensions of fitness and quality. In Experiment 1, participants rated faces and voices on scales for masculinity/femininity, age, health, height, and weight. The results showed that people make similar judgments from faces and voices, with particularly strong correlations for masculinity/femininity, health, and height. If, as these results suggest, faces and voices constitute backup signals for various dimensions, it is hypothetically possible that people would be able to accurately match novel faces and voices for identity. However, previous investigations into novel face–voice matching offer contradictory results. In Experiment 2, participants saw a face and heard a voice and were required to decide whether the face and voice belonged to the same person. Matching accuracy was significantly above chance level, suggesting that judgments made independently from faces and voices are sufficiently similar that people can match the two. Both sets of results were analyzed using multilevel modeling and are interpreted as being consistent with the backup signal hypothesis
Use of lung and brain perfusion imaging in the HELLP syndrome
Patients with multi-organ disorders may present with a plethora of confusing symptoms and signs. Often early diagnosis of significant disease is essential and can be difficult with standard radiological techniques. This case report presents the use of two radioisotopic techniques to assess brain and lung perfusion in a patient with such an acute-multi-organ disorder-the HELLP syndrome
Model Order Reduction for Rotating Electrical Machines
The simulation of electric rotating machines is both computationally
expensive and memory intensive. To overcome these costs, model order reduction
techniques can be applied. The focus of this contribution is especially on
machines that contain non-symmetric components. These are usually introduced
during the mass production process and are modeled by small perturbations in
the geometry (e.g., eccentricity) or the material parameters. While model order
reduction for symmetric machines is clear and does not need special treatment,
the non-symmetric setting adds additional challenges. An adaptive strategy
based on proper orthogonal decomposition is developed to overcome these
difficulties. Equipped with an a posteriori error estimator the obtained
solution is certified. Numerical examples are presented to demonstrate the
effectiveness of the proposed method
Microscopic activity patterns in the Naming Game
The models of statistical physics used to study collective phenomena in some
interdisciplinary contexts, such as social dynamics and opinion spreading, do
not consider the effects of the memory on individual decision processes. On the
contrary, in the Naming Game, a recently proposed model of Language formation,
each agent chooses a particular state, or opinion, by means of a memory-based
negotiation process, during which a variable number of states is collected and
kept in memory. In this perspective, the statistical features of the number of
states collected by the agents becomes a relevant quantity to understand the
dynamics of the model, and the influence of topological properties on
memory-based models. By means of a master equation approach, we analyze the
internal agent dynamics of Naming Game in populations embedded on networks,
finding that it strongly depends on very general topological properties of the
system (e.g. average and fluctuations of the degree). However, the influence of
topological properties on the microscopic individual dynamics is a general
phenomenon that should characterize all those social interactions that can be
modeled by memory-based negotiation processes.Comment: submitted to J. Phys.
Sharp transition towards shared vocabularies in multi-agent systems
What processes can explain how very large populations are able to converge on
the use of a particular word or grammatical construction without global
coordination? Answering this question helps to understand why new language
constructs usually propagate along an S-shaped curve with a rather sudden
transition towards global agreement. It also helps to analyze and design new
technologies that support or orchestrate self-organizing communication systems,
such as recent social tagging systems for the web. The article introduces and
studies a microscopic model of communicating autonomous agents performing
language games without any central control. We show that the system undergoes a
disorder/order transition, going trough a sharp symmetry breaking process to
reach a shared set of conventions. Before the transition, the system builds up
non-trivial scale-invariant correlations, for instance in the distribution of
competing synonyms, which display a Zipf-like law. These correlations make the
system ready for the transition towards shared conventions, which, observed on
the time-scale of collective behaviors, becomes sharper and sharper with system
size. This surprising result not only explains why human language can scale up
to very large populations but also suggests ways to optimize artificial
semiotic dynamics.Comment: 12 pages, 4 figure
Towards a grapho-phonologically parsed corpus of medieval Scots:Database design and technical solutions
This paper presents a newly constructed corpus of sound-to-spelling mappings in medieval Scots, which stems from the work of the From Inglis to Scots (FITS) project. We have developed a systematic approach to the relationships between individual spellings and proposed sound values, and recorded these mutual links in a relational database. In this paper, we introduce the theoretical underpinnings of sound-to-spelling and spelling-to-sound mappings, and show how a Scots root morpheme undergoes grapho-phonological parsing, the analytical procedure that is employed to break down spelling sequences into sound units. We explain the data collection and annotation for the FITS Corpus (Alcorn et al., forthcoming), drawing attention to the extensive meta-data which accompany each analysed unit of spelling and sound. The database records grammatical and lexical information about the root, the positional arrangement of segments within the root, labels for the nuclei, vowels and consonants, the morphological context, and extra-linguistic detail of the text a given root was taken from (date, place and text type). With this wealth of information, the FITS corpus is capable of answering complex queries about the sound and spelling systems of medieval Scots. We also suggest how our methodology can be transferred to other non-standardised spelling systems
Evaluation of a novel mitochondrial Pan-Mucorales marker for the detection, identification, quantification, and growth stage determination of mucormycetes
Mucormycosis infections are infrequent yet aggressive and serious fungal infections. Early diagnosis of mucormycosis and its discrimination from other fungal infections is required for targeted treatment and more favorable patient outcomes. The majority of the molecular assays use 18 S rDNA. In the current study, we aimed to explore the potential of the mitochondrial rnl (encoding for large-subunit-ribosomal-RNA) gene as a novel molecular marker suitable for research and diagnostics. Rnl was evaluated as a marker for: (1) the Mucorales family, (2) species identification (Rhizopus arrhizus, R. microsporus, Mucor circinelloides, and Lichtheimia species complexes), (3) growth stage, and (4) quantification. Sensitivity, specificity, discriminatory power, the limit of detection (LoD), and cross-reactivity were evaluated. Assays were tested using pure cultures, spiked clinical samples, murine organs, and human paraffin-embedded-tissue (FFPE) samples. Mitochondrial markers were found to be superior to nuclear markers for degraded samples. Rnl outperformed the UMD universal® (Molyzm) marker in FFPE (71.5% positive samples versus 50%). Spiked blood samples highlighted the potential of rnl as a pan-Mucorales screening test. Fungal burden was reproducibly quantified in murine organs using standard curves. Identification of pure cultures gave a perfect (100%) correlation with the detected internal transcribed spacer (ITS) sequence. In conclusion, mitochondrial genes, such as rnl, provide an alternative to the nuclear 18 S rDNA genes and deserve further evaluation.CD laboratory: This research was funded by the Christian Doppler Laboratory for fungal infections
Mesoscopic Transport Through Ballistic Cavities: A Random S-Matrix Theory Approach
We deduce the effects of quantum interference on the conductance of chaotic
cavities by using a statistical ansatz for the S matrix. Assuming that the
circular ensembles describe the S matrix of a chaotic cavity, we find that the
conductance fluctuation and weak-localization magnitudes are universal: they
are independent of the size and shape of the cavity if the number of incoming
modes, N, is large. The limit of small N is more relevant experimentally; here
we calculate the full distribution of the conductance and find striking
differences as N changes or a magnetic field is applied.Comment: 4 pages revtex 3.0 (2-column) plus 2 postscript figures (appended),
hub.pam.94.
Clinical Study The Impact of Personality Traits on the Outcome of Total Knee Arthroplasty
Ten to twenty percent of patients with total knee arthroplasty (TKA) are dissatisfied with their clinical outcome. Aim of this study was to investigate the impact of personality traits on the subjective outcome of TKA. We investigated 80 patients with 86 computer navigated TKAs. We asked for patients satisfaction and divided patients into two groups (satisfied or dissatisfied). 12 personality traits were tested by the Freiburg Personality Inventory (FPI-R). Postoperative examination included Knee Society Score (KSS), Western Ontario and McMaster University Osteoarthritis Index (WOMAC), and the Visual Analogue Scale (VAS). Radiologic investigation was done in all patients. 84% of our patients were satisfied, while 16% were not satisfied. The FPI-R showed statistical significant influence of four personality traits on patient satisfaction: life satisfaction ( = 0.006), performance orientation ( = 0.015), somatic distress ( = 0.001), and emotional stability ( = 0.002). All clinical scores (VAS, WOMAC, and KSS) showed significantly better results in the satisfied patient. Radiological examination showed optimal alignment of all TKAs. There were no complications requiring revision surgery. The results of our study show that personality traits may influence patients satisfaction and clinical outcome after TKA. Therefore patients personality traits may be a useful predictive factor for postoperative satisfaction after TKA
- …