57 research outputs found

    Aerodynamical and Structural Analysis of Operationally Used Turbine Blades

    Get PDF
    This paper presents an integrated methodology for the analysis of operationally-used turbine blades, incorporating aerodynamic and multiple structural simulations. In jet engines, blade rubbing and erosion lead to deviations of the blade geometry. The presented functional simulations are conducted in order to predict the influence of wear on the performance of turbine blades based on these geometric variations. A numerical simulation of the investigated turbine blades using CFD show the change of aerodynamic performance and the flow field due to wear. Additionally, the deviations of the blade geometry lead to a different pressure and temperature distribution on the blade surface, which is used as input for the structural simulations. The change in geometry, surface pressure and temperature lead to a change in vibration behavior of the blade. Particularly the eigenfrequencies and excitation are affected. This is incorporated into the analysis by performing a structural vibration simulation of a complete bladed disk, using component mode synthesis and wave base substructuring. The mistuning effects are analyzed statistically using the Monte Carlo method. The change in vibration amplitudes influences crack opening and closing for a single blade under thermo-mechanical load. These processes, including thermal expansion, are investigated using the extended finite element method. Two real turbine blades are used to compare the characteristics of a new and a used blade.DFG/SFB/87

    Current challenges and future directions in data assimilation and reanalysis

    Get PDF
    The first Joint WCRP1-WWRP2 Symposium on Data Assimilation and Reanalysis took place on13-17 September 2021, and it was organized in conjunction with the ECMWF Annual Seminaron observations. The last WCRP/WWRP-organized meetings were held separately for data assimilation and reanalysis in 2017 (Buizza et al. 2018; Cardinali et al. 2019). Since then, commonchallenges and new emerging topics have increased the need to bring these communities together toexchange new ideas and findings. Thus, a symposium involving the aforementioned communitieswas jointly organized by DWD3, HErZ4, WCRP, WWRP, and the ECMWF annual seminar. Majorgoals were to increase diversity, provide early career scientists with opportunities to present theirwork and extend their professional network, and bridge gaps between the various communities.The online format allowed more than 500 participants from over 50 countries to meet in avirtual setting, using the gathertown 5 platform as the central tool to access the meeting. A virtualconference center was created where people could freely move around and talk to other close-byparticipants. A lobby served as the main hub and it connected the poster halls and the conferencerooms for the oral presentations and the ECMWF seminar talks. The feedback from the participantswas overwhelmingly positive.Scientifically, the meeting offered opportunities to bring together the communities of Earth systemdata assimilation, reanalysis and observations to identify current challenges, seek opportunitiesfor collaboration, and strategic planning on more integrated systems for the longer term. Thecontributions totalled 140 oral and over 150 poster presentations covering a large variety oftopics with increased interest in Earth system approaches, machine learning and increased spatial resolutions. Key findings of the symposium and the ECMWF annual seminar are summarized insection 2. Section 3 highlights the common and emerging challenges of these communities.Fil: Valmassoi, Arianna. Hans-ertel-centre For Weather Research; Alemania. Institut Fur Geowissenschaften ; Universitaet Bonn;Fil: Keller, Jan D.. Deutscher Wetterdienst; AlemaniaFil: Kleist, Daryl T.. National Ocean And Atmospheric Administration; Estados UnidosFil: English, Stephen. European Center For Medium Range Weather Forecasting; Reino UnidoFil: Ahrens, Bodo. Goethe Universitat Frankfurt; AlemaniaFil: Ďurán, Ivan Bašták. Goethe Universitat Frankfurt; AlemaniaFil: Bauernschubert, Elisabeth. Deutscher Wetterdienst; AlemaniaFil: Bosilovich, Michael G.. National Aeronautics and Space Administration; Estados UnidosFil: Fujiwara, Masatomo. Hokkaido University; JapónFil: Hersbach, Hans. European Center For Medium Range Weather Forecasting; Reino UnidoFil: Lei, Lili. Nanjing University; ChinaFil: Löhnert, Ulrich. University Of Cologne; AlemaniaFil: Mamnun, Nabir. Helmholtz Centre for Environmental Research; AlemaniaFil: Martin, Cory R.. German Research Centre for Geosciences; AlemaniaFil: Moore, Andrew. California State University; Estados UnidosFil: Niermann, Deborah. Deutscher Wetterdienst; AlemaniaFil: Ruiz, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; ArgentinaFil: Scheck, Leonhard. Deutscher Wetterdienst; Alemani

    Fast preparation route to high-performances textured Sr-doped Ca 3 Co 4 O 9 thermoelectric materials through precursor powder modification

    Get PDF
    This work presents a short and very efficientmethod to produce high performance textured Ca3Co4O9thermoelectric materials through initial powders modifica-tion. Microstructure has shown good grain orientation, andlow porosity while slightly lower grain sizes were obtained insamples prepared from attrition milled powders. All samplesshow the high density of around 96% of the theoretical value.These similar characteristics are reflected in, approximately,the same electrical resistivity and Seebeck coefficient valuesfor both types of samples. However, in spite of similar powerfactor (PF) at low temperatures, it is slightly higher at hightemperature for the attrition milled samples. On the otherhand, the processing time reduction (from 38 to 2 h) whenusing attrition milled precursors, leads to lower mechanicalproperties in these samples. All these data clearly point out tothe similar characteristics of both kinds of samples, with adrastic processing time decrease when using attrition milledprecursors, which is of the main economic importance whenconsidering their industrial production

    Observing convective aggregation

    Get PDF
    Convective self-aggregation, the spontaneous organization of initially scattered convection into isolated convective clusters despite spatially homogeneous boundary conditions and forcing, was first recognized and studied in idealized numerical simulations. While there is a rich history of observational work on convective clustering and organization, there have been only a few studies that have analyzed observations to look specifically for processes related to self-aggregation in models. Here we review observational work in both of these categories and motivate the need for more of this work. We acknowledge that self-aggregation may appear to be far-removed from observed convective organization in terms of time scales, initial conditions, initiation processes, and mean state extremes, but we argue that these differences vary greatly across the diverse range of model simulations in the literature and that these comparisons are already offering important insights into real tropical phenomena. Some preliminary new findings are presented, including results showing that a self-aggregation simulation with square geometry has too broad a distribution of humidity and is too dry in the driest regions when compared with radiosonde records from Nauru, while an elongated channel simulation has realistic representations of atmospheric humidity and its variability. We discuss recent work increasing our understanding of how organized convection and climate change may interact, and how model discrepancies related to this question are prompting interest in observational comparisons. We also propose possible future directions for observational work related to convective aggregation, including novel satellite approaches and a ground-based observational network

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Atmospheric and Surface Processes, and Feedback Mechanisms Determining Arctic Amplification: A Review of First Results and Prospects of the (AC)3 Project

    Get PDF
    Mechanisms behind the phenomenon of Arctic amplification are widely discussed. To contribute to this debate, the (AC)3 project has been established in 2016. It comprises modeling and data analysis efforts as well as observational elements. The project has assembled a wealth of ground-based, airborne, ship-borne, and satellite data of physical, chemical, and meteorological properties of the Arctic atmosphere, cryosphere, and upper ocean that are available for the Arctic climate research community. Short-term changes and indications of long-term trends in Arctic climate parameters have been detected using existing and new data
    corecore