132 research outputs found

    Effects of deficit irrigation with saline water on yield and grape composition of Vitis vinifera L. cv. Monastrell

    Full text link
    [EN] Warm and semi-arid climates are characterized by rainfall scarcity, resulting in the frequent use of low-quality water for irrigation. This work was undertaken to study the effects of water stress and saline irrigation on yield and grape composition of Monastrell grapevines grafted onto 1103P rootstock. The experiment was carried out during three consecutive seasons in a commercial vineyard located in Jumilla (SE Spain) with a loamy-sandy soil. Rainfed vines were compared with five watering regimes including a Control, irrigated with standard water, and four treatments that combined two different schedules for irrigation initiation (pre- and post-veraison) with saline water obtained by adding two types of salts (sulphates and chlorides). Vines from treatments with more severe water stress (i.e., rainfed) showed lower yields and vegetative growth. Moreover, the Rainfed treatment clearly modified grape composition when compared with the Control treatment by increasing berry phenolic content. The application of saline water slightly affected vine performance and grape composition regardless of the type of salts added to the irrigation water. Indeed, the watering regime had a greater effect on yield, vegetative growth and grape composition than the use of different saline waters. Our results suggest that, in the mid-term (3 years), and with a vineyard soil with good drainage, the use of saline waters is not detrimental to vine performance, but does not improve grape composition. Further research is required to assess the long-term effects of saline water application, particularly in view of the important accumulation of chlorides and sodium in leaf tissues observed in vines watered with salty water at the last season of this experiment.Open Access funding provided thanks to the CRUECSIC agreement with Springer Nature. This work was supported by the Spanish Ministry of Economy and Competitiveness with FEDER co-financing [grant numbers AGL-2014-54201-C4-4-R and AGL2017-83738-C3-3-R].MartĂ­nez-Moreno, A.; PĂ©rez-Álvarez, E.; Intrigliolo, D.; MirĂĄs-Avalos, J.; LĂłpez-Urrea, R.; Gil-Muñoz, R.; Lizama Abad, V.... (2023). Effects of deficit irrigation with saline water on yield and grape composition of Vitis vinifera L. cv. Monastrell. Irrigation Science. 41(4):469-485. https://doi.org/10.1007/s00271-022-00795-x469485414Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration. Guidelines for computing crop water requirements. FAO irrigation and drainage, paper 56. FAO, Rome 300(9):D05109Amerine MA, Winkler AJ (1944) Composition and quality of musts and wines of California grapes. Hilgardia. 15:493–675Blouin J (1992) Tecniques dÂŽanalyses des moĂ»tes et des vins. Dujardin-Salleron, Paris, FranceBuesa I, PĂ©rez D, Castel J, Intrigliolo DS, Castel JR (2017) Effect of deficit irrigation on vine performance and grape composition of Vitis vinifera L. cv. Muscat of Alexandria. Aust J Grape Wine Res. 23:251–259Castellarin SD, Pfeiffer A, Sivilotti P, Degan M, Peterlunger E, Di Gaspero G (2007) Transcriptional regulation of anthocyanin biosynthesis in ripening fruits of grapevine under seasonal water deficit. Plant Cell Environ. 30:1381–1399Chalmers YM, Downey MO, Krstic MP, Loveys BR, Dry PR (2010) Influence of sustained deficit Irrigation on colour parameters of Cabernet Sauvignon and Shiraz microscale wine fermentations. Aust J Grape Wine Res. 16:298–316Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot. 103:551–560ChonĂ© X, Van Leeuwen C, Dubourdieu D, GaudillĂšre JP (2001) Stem water potential is a sensitive indicator of grapevine water status. Ann Bot. 87:477–483Cramer GR, Ergui A, Grimplet J, Tillett RL, Tattersall EAR, Bohlman MC (2007) Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct Integr Genomics. 7:111–134Dag A, Ben-Gal A, Goldberger S, Yermiyahu U, Zipori I, David I, Netzer Y, Kerem Z (2015) Sodium and chloride distribution in grapevines as a function of rootstock and irrigation water salinity. Am J Enol Vitic. 66:80–84Degaris KA, Walker RR, Loveys BR, Tyerman SD (2016) Comparative effects of deficit and partial root-zone drying irrigation techniques using moderately saline water on ion partitioning in Shiraz and Grenache grapevines. Aust J Grape Wine Res. 22:296–306Deluc LG, Quilici DR, Decendit A, Grimplet J, Wheatley MD, Schlauch KA (2009) Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay. BMC Genomics. 10:212–238Downey MO, Dokoozlian NK, Krstic MP (2006) Cultural practice and environmental impacts on the flavonoid composition of grapes and wine: a review of recent research. Am J Enol Vitic. 57:257–268Downton WJS (1977) Photosynthesis in salt-stressed grapevines. Aust J Plant Physiol 4(2):183–192Ezzhaouani A, Valancogne C, Pieri P, Amalak T, GaudillĂšre JP (2007) Water economy by Italia grapevines under different irrigation treatments in a Mediterranean climate. J Int Sci Vigne et du Vin. 41:131–139FernĂĄndez JE, Alcon F, Diaz-Espejo A, Hernandez-Santana V, Cuevas MV (2020) Water use indicators and economic analysis for on-farm irrigation decision: a casestudy of a super high density olive tree orchard. Agric Water Manag. 237:106074Gambetta GA, Carlos Herrera J, Dayer S, Feng Q, Hochberg U, Castellarin SD (2020) The physiology of drought stress in grapevine: towards an integrative definition of drought tolerance. J Exp Bot. 71:4658–4676Glories Y (1984) La couleur des vins rouges. 1re. Partie: les equilibres des anthocyanes et des tanins. J Int Sci Vigne et du Vin. 18:195–217Hawker JS, Walker RR (1978) The effect of sodium chloride on the growth and fruiting of Cabernet Sauvignon vines. Am J Enol Vitic. 29:172–176Intrigliolo DS, Castel JR (2011) Interactive effects of deficit irrigation and shoot and cluster thinning on grapevine cv. Tempranillo. Water relations, vine performance and berry and wine composition. Irrig Sci 29(6):443–454Intrigliolo DS, Lizama V, GarcĂ­a-Esparza MJ, Abrisqueta I, Álvarez I (2016) Effects of post-versions irrigation regime on cabernet sauvignon Grapevines in Valencia, Spain: yield and grape composition. Agric Water Manag. 170:110–119IPCC (International Panel on Climate Change). (2019) Climate Change 2019: Impacts, Adaptation, and Vulnerability. http://ipcc‐wg2.gov/AR5/report/final‐drafts. Accessed 11 Sept 2021Junquera P, Lissarrague JR, Jimenez L, Linares R, Baeza P (2012) Long-term effects of different irrigation strategies on yield components, vine vigour, and grape composition in cv. Cabernet-Sauvignon (Vitis vinifera L.). Irrig Sci. 30:351–361Keller M (2015) The science of grapevines, anatomy and physiology. Second edition. Ed. Elsevier, San Diego, CAKennedy JA, Matthews MA, Waterhouse AL (2002) Effect of maturity and vine water status on grape skin and wine flavonoids. Am J Enol Vitic. 53:268–274Kliewer WM, Dokoozlian NK (2005) Leaf area/crop weight ratios of grapevines: influence on fruit composition and wine quality. Am J Enol Vitic. 56(2):170–181LĂłpez-Urrea R, Montoro A, Mañas F, LĂłpez-Fuster P, Fereres E (2012) Evapotranspiration and crop coefficients from lysimeter measurements of mature Tempranillo wine grapes. Agric Water Manag. 112:13–20Maas EV, Hoffman GJ (1977) Crop salt tolerance-current assessment. J Irrig Drain Div 103:115–134MartĂ­nez-Moreno A, PĂ©rez-Álvarez EP, LĂłpez-Urrea R, Paladines-Quezada DF, Moreno-Olivares JD, Intrigliolo DS, Gil-Muñoz R (2021) Effects of deficit irrigation with saline water on wine color and polyphenoliccomposition of Vitis vinifera L. cv. Monastrell. Sci Hortic 283:110085MartĂ­nez-Moreno A, PĂ©rez-Álvarez E, LĂłpez-Urrea R, Intrigliolo D, GonzĂĄlez-Centeno MR, Teissedre P-L, Gil-Muñoz R (2022) Is deficit irrigation with saline waters a viable alternative for winegrowers in semiarid areas? OENO One 56(1):101–116Matthews MA, Anderson MM (1989) Reproductive development in grape (Vitis vinifera L.): responses to seasonal water deficits. Am J Enol Vitic. 40:52–60Medrano H, TomĂĄs M, Martorell S, Escalona JM, Pou A, Fuentes S, Flexas J, Bota J (2015) Improving water use efficiency of vineyards in semi-arid regions a review. Agron Sustain Dev 35:499–517MirĂĄs-Avalos JM, Intrigliolo DS (2017) Grape composition under abiotic constrains: water stress and salinity. Front Plant Sci. 8:851Munitz S, Netzer Y, Schwartz A (2018) Sustained and regulated deficit irrigation of field-grown Merlot grapevines. Aust J Grape Wine Res. 23:87–94Myers BJ (1988) Water stress integral: a link between short-term stress and long-term growth. Tree Physiol. 4:315–323Nauriyal JP, Gupta OP (1967) Studies on salt tolerance of grape. Effect of total salt concentration. J Wine Res. 4:197–205Netzer Y, Shenker M, Schwartz A (2014) Effects of irrigation using treated wastewater on table grape vineyards: dynamics of sodium accumulation in soil and plant. Irrig Sci. 32:283–294Ojeda H, Andary C, Kraeva E, Carbonnea A, Deloire A (2002) Influence of preand postveraison water deficit on synthesis and concentration of skin phenolic compounds during berry growth of Vitis vinifera cv. Shiraz. Am J Enol Vitic. 53:261–267Ortega JF, De Juan JA, Tarjuelo JM (2005) Improving water management: the irrigation advisory service of Castilla-La Mancha (Spain). Agric Water Manag. 77:37–58Pellegrino A, Lebon E, Simonneau T, Wery J (2005) Towards a simple indicator of water stress in grapevine (Vitis vinifera L.) based on the differential sensitivities of vegetative growth components. Aust J Grape Wine Res. 11:306–315Pereira LS, Paredes P, Jovanovic N (2020) Soil water balance models for determining crop water and irrigation requirements and irrigation scheduling focusing on the FAO56 method and the dual Kc approach. Agric Water Manag. 241:106357PĂ©rez-Álvarez EP, Intrigliolo DS, Vivaldi GA, GarcĂ­a-Esparza MJ, Lizama V, Álvarez I (2021) Effects of the irrigation regimes on grapevine cv. Bobal in a Mediterranean climate: I. Water relations, vine performance and grape composition. Agric Water Manag 248:106772Prior LD, Grieve AM, Slavich PG, Cullis BR (1992) Sodium chloride and soil texture interactions in irrigated field grown sultana grapevines. II. Plant mineral content, growth and physiology. Aust J Agric Res. 43:1067–1083Ramos MC, PĂ©rez-Álvarez EP, Peregrina F, MartĂ­nez de Toda F (2020) Relationships between grape composition of Tempranillo variety and available soil water and water stress under different weather conditions. Sci Hortic. 262:109063Riquelme F, MartĂ­nez-Cutillas A (2018) El libro de la Monastrell. CofradĂ­a del Vino Reino de la Monastrell. ConsejerĂ­a de Agua, Agricultura, GanaderĂ­a y Pesca. Murcia. ISBN: 978-84-09-06249-2.Roby G, Harbertson JF, Adams DA, Matthews MA (2004) Berry size and vine water deficits as factors in winegrape composition: anthocyanins and tannins. Aust J Grape Wine Res. 10:100–107Romero P, FernĂĄndez-FernĂĄndez JI, MartĂ­nez-Cutillas A (2010) Physiological thresholds for efficient regulated deficit-irrigation management inwinegrapes grown under semiarid conditions. Am J Enol Vitic. 61:300–312Romero P, Gil-Muñoz R, del Amor FM, ValdĂ©s E, FernĂĄndez JI, Martinez-Cutillas A (2013) Regulated deficit irrigation based upon optimum water status improves phenolic composition in monastrell grapes and wines. Agric Water Manag. 121:85–101Romero P, GarcĂ­a-GarcĂ­a J, FernĂĄndez-FernĂĄndez JI, Gil Muñoz R, del Amor F, MartĂ­nez-Cutillas A (2016) Improving berry and wine quality attributes and vineyard economic efficiency by long-term deficit irrigation practices under semiarid conditions. Sci Hortic. 203:69–85Romero P, BotĂ­a P, Maria Navarro J (2018) Selecting rootstocks to improve vine performance and vineyard sustainability in deficit irrigated Monastrell grapevines under semiarid conditions. Agric Water Manag. 209:73–93Santesteban LG, Miranda C, Royo JB (2011) Regulated deficit irrigation effects on growth, yield, grape quality and individual anthocyanin composition in Vitis vinifera L. cv. “Tempranillo.” Agric Water Manag. 98:1171–1179Sarneckis CJ, Dambergs RG, Jones P, Mercurio M, Herderich MJ, Smith PA (2006) Quantification of condensed tannins by precipitation with methylcellulose: development and validation of an optimised tool for grape and wine analysis. Aust J Grape Wine Res. 12:39–49Scacco A, Verzera A, Carmela M, Lanza A, Tripodi G, Dima G (2010) Influence of soil salinity on sensory characteristics and volatile aroma compounds of Nero d`Avola Wine. Am J Enol Vitic. 65:498–505Suarez DL, Celis N, Anderson RG, Sandhu D (2019) Grape rootstock response to salinity, water and combined salinity and water stresses. Agron. 9:321Van Leeuwen C, Tregoat O, ChonĂ© X, Bois B, Pernet D, GaudillĂšre JP (2009) Vine water status is a key factor in grape ripening and vintage quality for red Bordeaux wine. How can it be assessed for vineyard management purposes. J Int Sci Vigne du Vin. 43:121–134Vicente-Serrano SM, Lopez-Moreno JI, BeguerĂ­a S, Lorenzo-Lacruz J, Sanchez-Lorenzo A, GarcĂ­a-Ruiz JM, Azorin-Molina C, MorĂĄn-Tejeda E, Revuelto J, Trigo R, Coelho F, Espejo F (2014) Evidence of increasing drought severity caused by temperature rise in Southern Europe. Environ Res Lett 9:044001Walker RR, Scott NS, Kriedemann PE (1981) An analysis of photosynthetic response to salt treatment in Vitis vinifera. Aust J Plant Physiol. 8:359–374Walker R, Blackmore D, Clingeleffer P, Iacono F (1997) Effect of salinity and ramsey rootstock on ion concentrations and carbon dioxide assimilation in leaves of drip-irrigated, field-grown grapevines (Vitis vinifera L. cv. Sultana). Aust J Grape Wine Res 3(2):66–74Walker RR, Blackmore DH, Clingeleffer PR, Correll RL (2002) Rootstock effect on salt tolerance of irrigated field-grown grapevines (Vitis vinifera L. cv. Sultana). Yield and vigour inter-relationships. Aust J Grape Wine Res. 8:3–14Walker RR, Blackmore DH, Clingeleffer PR (2010) Impact of rootstock on yield and ion concentrations in petioles, juice and wine of Shiraz and Chardonnay in different viticultural environments with different irrigation water salinity. Aust J Grape Wine Res 16:243–257Zhang X, Walker RR, Stevens RM, Prior L (2002) Yield salinity relationships of grapevine (Vitis vinifera L.) on own roots and a range of rootstocks. Aust J Grape Wine Res. 8:150–156Zhu JK (2007) Plant Salt, Stress. John Wiley and Sons, Ltd., Nueva Jersey. EEUUZufferey V, Spring JL, Verdenal T, Dienes A, Belcher S, Lorenzini F, Koestel C, Rösti J, Gindro K, Spangenberg J, Viret O (2017) The influence of water stress on plant hydraulics, gas exchange, berry composition and quality of pinot noir wines in Switzerland. OENO One. 51:17–2

    Effect of multi-component school-based program on body mass index, cardiovascular and diabetes risks in a multi-ethnic study

    Get PDF
    Background: Mexico occupies one of the first places worldwide in childhood obesity. Its Mestizo and Indigenous communities present different levels of westernization which have triggered different epidemiological diseases. We assessed the effects of a multi-component school-based intervention program on obesity, cardiovascular and diabetes risk factors. Methods: A physical activity, health education and parent involvement (PAHEPI) program was developed and applied in six urban (Mestizo ethnic group) and indigenous (Seri and Yaqui ethnic groups) primary schools for 12 weeks. A total of 320 children aged 4–12 years participated in intervention program; 203 under Treatment 1 (PAHEPI program) and 117, only from Mestizo groups, under Treatment 2 (PAHEPI+ school meals). For Body Mass Index (BMI), cardiovascular and diabetes factors, pairwise comparisons of values at baseline and after treatments were done using Wilcoxon signed rank test. Generalized linear models were applied to assess the intervention effect by age, sex and nutritional status in relation to ethnicity and treatment. Results: We observed improvements on BMI in children with overweight-obesity and in triglycerides in the three ethnic groups. The Mestizo ethnic group showed the largest improvements under Treatment 2. While Seris showed improvements only in cardiovascular risk factors, Yaquis also showed improvements in diabetes risk factors, though not in BMI. Conclusions: This study showed that the same intervention may have positive but different effects in different ethnic groups depending on their lifestyle and their emerging epidemiological disease. Including this type of intervention as part of the school curriculum would allow to adapt to ethnic group in order to contribute more efficiently to child welfare

    Ceylon Pink Tea: Estudio de factibilidad de entrada al mercado mexicano

    Get PDF
    Este documento contiene una síntesis del trabajo que se realizó dentro del PAP vinculación internacional con PYMES ciclo primavera 2018 en conjunto con la empresa Ceylon Pink Tea, como objetivo de determinar la factibilidad de entrar al mercado mexicano con el té Ceylon Pink Tea, las regulaciones para este tipo de productos, las características del consumidor y el tamaño del mismo. Este proyecto se desarrollo en tres etapas: producto, mercado y logística, concluyendo con los resultados y recomendaciones para la empresa.ITESO, A.C

    Effects of deficit irrigation with saline water on yield and grape composition of Vitis vinifera L. cv. Monastrell

    Get PDF
    Warm and semi-arid climates are characterized by rainfall scarcity, resulting in the frequent use of low-quality water for irrigation. This work was undertaken to study the effects of water stress and saline irrigation on yield and grape composition of Monastrell grapevines grafted onto 1103P rootstock. The experiment was carried out during three consecutive seasons in a commercial vineyard located in Jumilla (SE Spain) with a loamy-sandy soil. Rainfed vines were compared with five watering regimes including a Control, irrigated with standard water, and four treatments that combined two different schedules for irrigation initiation (pre- and post-veraison) with saline water obtained by adding two types of salts (sulphates and chlorides). Vines from treatments with more severe water stress (i.e., rainfed) showed lower yields and vegetative growth. Moreover, the Rainfed treatment clearly modified grape composition when compared with the Control treatment by increasing berry phenolic content. The application of saline water slightly affected vine performance and grape composition regardless of the type of salts added to the irrigation water. Indeed, the watering regime had a greater effect on yield, vegetative growth and grape composition than the use of different saline waters. Our results suggest that, in the mid-term (3 years), and with a vineyard soil with good drainage, the use of saline waters is not detrimental to vine performance, but does not improve grape composition. Further research is required to assess the long-term effects of saline water application, particularly in view of the important accumulation of chlorides and sodium in leaf tissues observed in vines watered with salty water at the last season of this experiment.Publishe

    Thymidylate synthase gene variants as predictors of clinical response and toxicity to fluoropyrimidine-based chemotherapy for colorectal cancer

    Get PDF
    Abstract Background: Fluoropyrimidines form the chemotherapy backbone of advanced and metastatic colorectal cancer (CRC). These drugs are frequently associated with toxicity events that result in dose adjustments and even suspension of the treatment. The thymidylate synthase (TYMS) gene is a potential marker of response and toxicity to fluoropyirimidines as this enzyme is the molecular target of these drugs. Our aim was to assess the association between variants of TYMS with response and toxicity to fluoropyrimidines in patients with CRC in independent retrospective and prospective studies. Methods: Variants namely rs45445694, rs183205964, rs2853542 and rs151264360 of TYMS were genotyped in 105 CRC patients and were evaluated to define their association with clinical response and toxicity to fluoropyrimidines. Additionally, the relationship between genotypes and tumor gene expression was analyzed by quantitative polymerase chain reaction. Results: The 2R/2R (rs45445694) was associated with clinical response (p = 0.05, odds ratio (OR) = 3.45) and severe toxicity (p = 0.0014, OR = 5.21, from pooled data). Expression analysis in tumor tissues suggested a correlation between the 2R/2R genotype and low TYMS expression. Conclusions: The allele 2R (rs45445694) predicts severe toxicity and objective response in advanced CRC patients. In addition, the alleles G(rs2853542) and 6bp-(rs151264360) are independent predictors of response failure to chemotherapy. This is the first study made on a Latin American population that points out TYMS gene variants have predictive values for response and toxicity in patients with CRC treated with fluoropyrimidine-based chemotherapy

    Identification of novel synthetic lethal vulnerability in non small cell lung cancer by co targeting TMPRSS4 and DDR1

    Get PDF
    Finding novel targets in non-small cell lung cancer (NSCLC) is highly needed and identification of synthetic lethality between two genes is a new approach to target NSCLC. We previously found that TMPRSS4 promotes NSCLC growth and constitutes a prognostic biomarker. Here, through large-scale analyses across 5 public databases we identified consistent co-expression between TMPRSS4 and DDR1. Similar to TMPRSS4, DDR1 promoter was hypomethylated in NSCLC in 3 independent cohorts and hypomethylation was an independent prognostic factor of disease-free survival. Treatment with 5-azacitidine increased DDR1 levels in cell lines, suggesting an epigenetic regulation. Cells lacking TMPRSS4 were highly sensitive to the cytotoxic effect of the DDR1 inhibitor dasatinib. TMPRSS4/DDR1 double knock-down (KD) cells, but not single KD cells suffered a G0/G1 cell cycle arrest with loss of E2F1 and cyclins A and B, increased p21 levels and a larger number of cells in apoptosis. Moreover, double KD cells were highly sensitized to cisplatin, which caused massive apoptosis (~40%). In vivo studies demonstrated tumor regression in double KD-injected mice. In conclusion, we have identified a novel vulnerability in NSCLC resulting from a synthetic lethal interaction between DDR1 and TMPRSS4

    The Galaxy Activity, Torus, and Outflow Survey (GATOS): III. Revealing the inner icy structure in local active galactic nuclei

    Get PDF
    We use JWST/MIRI MRS spectroscopy of a sample of six local obscured type 1.9/2 active galactic nuclei (AGN) to compare their nuclear mid-IR absorption bands with the level of nuclear obscuration traced by X-rays. This study is the first to use subarcsecond angular resolution data of local obscured AGN to investigate the nuclear mid-IR absorption bands with a wide wavelength coverage (4.9–28.1 ÎŒm). All the nuclei show the 9.7 ÎŒm silicate band in absorption. We compare the strength of the 9.7 and 18 ÎŒm silicate features with torus model predictions. The observed silicate features are generally well explained by clumpy and smooth torus models. We report the detection of the 6 ÎŒm dirty water ice band (i.e., a mix of water and other molecules such as CO and CO2) at subarcsecond scales (∌0.26″ at 6 ÎŒm; inner ∌50 pc) in a sample of local AGN with different levels of nuclear obscuration in the range log NHX-Ray (cm−2)∌22 − 25. We find good correlation between the 6 ÎŒm water ice optical depths and NHX-Ray. This result indicates that the water ice absorption might be a reliable tracer of the nuclear intrinsic obscuration in AGN. The weak water ice absorption in less obscured AGN (log NHX-ray (cm−2)â‰Č23.0 cm−2) might be related to the hotter dust temperature (> TsubH2O ∌ 110 K) expected to be reached in the outer layers of the torus due to their more inhomogeneous medium. Our results suggest it might be necessary to include the molecular content, such as H2O, aliphatic hydrocarbons (CH−), and more complex polycyclic aromatic hydrocarbon (PAH) molecules, in torus models to better constrain key parameters such as the torus covering factor (i.e., nuclear obscuration)

    Memoria del II Coloquio de verano de investigaciĂłn de la Escuela de Negocios de ITESO, 2023

    Get PDF
    La memoria recoge cinco de las ponencias presentadas en el Coloquio de investigaciĂłn de verano de la Escuela de Negocios, 2023. Durante las presentaciones y el diĂĄlogo quisimos hacer Ă©nfasis en dos aspectos de nuestra labor universitaria: 1) el fortalecimiento de la Escuela de Negocios como instancia interdepartamental que comparte una misiĂłn comĂșn; 2) el modo como las tres funciones sustantivas (docencia, investigaciĂłn y vinculaciĂłn) se retroalimentan y sostienen mutuamente. Se presentan resĂșmenes extendidos de los siguientes trabajos: DiagnĂłstico de cultura organizacional por alumnos del PAP de GestiĂłn del cambio, del talento humano y la efectividad organizacional; Modelo estratĂ©gico de sostenibilidad basado en el modelo de flujos descontados (DCF); Laboratorios mĂłviles: impulsando la industria creativa-cultural en Jalisco; Nueva estrategia de comunicaciĂłn como proceso formativo para empresarios y emprendedores; EconomĂ­a Social y Solidaria como un elemento para el desarrollo de talleres del sector artesanal.ITESO, A.C
    • 

    corecore