48 research outputs found

    Arabidopsis thaliana FANCD2 promotes meiotic crossover formation

    Get PDF
    Fanconi anemia (FA) is a human autosomal recessive disorder characterized by chromosomal instability, developmental pathologies, predisposition to cancer, and reduced fertility. So far, 19 genes have been implicated in FA, most of them involved in DNA repair. Some are conserved across higher eukaryotes, including plants. The Arabidopsis thaliana genome encodes a homolog of the Fanconi anemia D2 gene (FANCD2) whose function in DNA repair is not yet fully understood. Here, we provide evidence that AtFANCD2 is required for meiotic homologous recombination. Meiosis is a specialized cell division that ensures reduction of genomic content by half and DNA exchange between homologous chromosomes via crossovers (COs) prior to gamete formation. In plants, a mutation in AtFANCD2 results in a 14% reduction of CO numbers. Genetic analysis demonstrated that AtFANCD2 acts in parallel to both MUTS HOMOLOG4 (AtMSH4), known for its role in promoting interfering COs and MMS AND UV SENSITIVE81 (AtMUS81), known for its role in the formation of noninterfering COs. AtFANCD2 promotes noninterfering COs in a MUS81-independent manner and is therefore part of an uncharted meiotic CO-promoting mechanism, in addition to those described previously

    Crystal structure of the Ego1-Ego2-Ego3 complex and its role in promoting Rag GTPase-dependent TORC1 signaling

    Get PDF
    The target of rapamycin complex 1 (TORC1) integrates various hormonal and nutrient signals to regulate cell growth, proliferation, and differentiation. Amino acid-dependent activation of TORC1 is mediated via the yeast EGO complex (EGOC) consisting of Gtr1, Gtr2, Ego1, and Ego3. Here, we identify the previously uncharacterized Ycr075w-a/Ego2 protein as an additional EGOC component that is required for the integrity and localization of the heterodimeric Gtr1-Gtr2 GTPases, equivalent to mammalian Rag GTPases. We also report the crystal structure of the Ego1-Ego2-Ego3 ternary complex (EGO-TC) at 2.4 Å resolution, in which Ego2 and Ego3 form a heterodimer flanked along one side by Ego1. Structural data also reveal the structural conservation of protein components between the yeast EGO-TC and the human Ragulator, which acts as a GEF for Rag GTPases. Interestingly, however, artificial tethering of Gtr1-Gtr2 to the vacuolar membrane is sufficient to activate TORC1 in response to amino acids even in the absence of the EGO-TC. Our structural and functional data therefore support a model in which the EGO-TC acts as a scaffold for Rag GTPases in TORC1 signaling

    Membrane Recruitment of Scaffold Proteins Drives Specific Signaling

    Get PDF
    Cells must give the right response to each stimulus they receive. Scaffolding, a signaling process mediated by scaffold proteins, participates in the decoding of the cues by specifically directing signal transduction. The aim of this paper is to describe the molecular mechanisms of scaffolding, i.e. the principles by which scaffold proteins drive a specific response of the cell. Since similar scaffold proteins are found in many species, they evolved according to the purpose of each organism. This means they require adaptability. In the usual description of the mechanisms of scaffolding, scaffold proteins are considered as reactors where molecules involved in a cascade of reactions are simultaneously bound with the right orientation to meet and interact. This description is not realistic: (i) it is not verified by experiments and (ii) timing and orientation constraints make it complex which seems to contradict the required adaptability. A scaffold protein, Ste5, is used in the MAPK pathway of Saccharomyces Cerevisiae for the cell to provide a specific response to stimuli. The massive amount of data available for this pathway makes it ideal to investigate the actual mechanisms of scaffolding. Here, a complete treatment of the chemical reactions allows the computation of the distributions of all the proteins involved in the MAPK pathway when the cell receives various cues. These distributions are compared to several experimental results. It turns out that the molecular mechanisms of scaffolding are much simpler and more adaptable than previously thought in the reactor model. Scaffold proteins bind only one molecule at a time. Then, their membrane recruitment automatically drives specific, amplified and localized signal transductions. The mechanisms presented here, which explain how the membrane recruitment of a protein can produce a drastic change in the activity of cells, are generic and may be commonly used in many biological processes

    Evaluation of Fermi Read-out of the ATLAS Tilecal Prototype

    Get PDF
    Prototypes of the \fermi{} system have been used to read out a prototype of the \atlas{} hadron calorimeter in a beam test at the CERN SPS. The \fermi{} read-out system, using a compressor and a 40 MHz sampling ADC, is compared to a standard charge integrating read-out by measuring the energy resolution of the calorimeter separately with the two systems on the same events. Signal processing techniques have been designed to optimize the treatment of \fermi{} data. The resulting energy resolution is better than the one obtained with the standard read-out

    The complete DNA sequence and genomic organization of the avian adenovirus CELO

    No full text
    The complete DNA sequence of the avian adenovirus chicken embryo lethal orphan (CELO) virus (FAV-1) is reported here. The genome was found to be 43,804 bp in length, approximately 8 kb longer than those of the human subgenus C adenoviruses (Ad2 and Ad5). This length is supported by pulsed-field gel electrophoresis analysis of genomes isolated from several related FAV-1 isolates (Indiana C and OTE). The genes for major viral structural proteins (Illa, penton base, hexon, pVI, and pVIII), as well as the 52,000-molecular-weight (52K) and 100K proteins and the early-region 2 genes and IVa2, are present in the expected locations in the genome. CELO virus encodes two fiber proteins and a different set of the DNA-packaging core proteins, which may be important in condensing the longer CELO virus genome. No pV or pIX genes are present. Most surprisingly, CELO virus possesses no identifiable E1, E3, and E4 regions. There is 5 kb at the left end of the CELO virus genome and 15 kb at the right end with no homology to Ad2. The sequences are rich in open reading frames, and it is likely that these encode functions that replace the missing El, E3, and E4 functions

    The complete DNA sequence and genomic organization of the avian adenovirus CELO.

    No full text
    The complete DNA sequence of the avian adenovirus chicken embryo lethal orphan (CELO) virus (FAV-1) is reported here. The genome was found to be 43,804 bp in length, approximately 8 kb longer than those of the human subgenus C adenoviruses (Ad2 and Ad5). This length is supported by pulsed-field gel electrophoresis analysis of genomes isolated from several related FAV-1 isolates (Indiana C and OTE). The genes for major viral structural proteins (Illa, penton base, hexon, pVI, and pVIII), as well as the 52,000-molecular-weight (52K) and 100K proteins and the early-region 2 genes and IVa2, are present in the expected locations in the genome. CELO virus encodes two fiber proteins and a different set of the DNA-packaging core proteins, which may be important in condensing the longer CELO virus genome. No pV or pIX genes are present. Most surprisingly, CELO virus possesses no identifiable E1, E3, and E4 regions. There is 5 kb at the left end of the CELO virus genome and 15 kb at the right end with no homology to Ad2. The sequences are rich in open reading frames, and it is likely that these encode functions that replace the missing El, E3, and E4 functions
    corecore