235 research outputs found

    Vortex core transitions in superfluid 3He in globally anisotropic aerogels

    Full text link
    Core structures of a single vortex in A-like and B-like phases of superfluid 3He in uniaxially compressed and stretched aerogels are studied by numerically solving Ginzburg-Landau equations derived microscopically. It is found that, although any uniaxial deformation leads to a wider A-like phase with the axial pairing in the pressure-temperature phase diagram, the vortex core states in the two phases in aerogel depend highly on the type of deformation. In a compressed aerogel, the first-order vortex core transition (VCT) previously seen in the bulk B phase appears at any pressure in the B-like phase while no strange vortex core is expected in the corresponding A-like phase. By contrast, in a stretched aerogel, the VCT in the B-like phase is lost while another VCT is expected to occur between a nonunitary core and a polar one in the A-like phase. Experimental search for these results is hoped to understand correlation between superfluid 3He and aerogel structure.Comment: 7 pages, 6 figures Text was changed. Resubmitted versio

    Soliton-like Spin State in the A-like Phase of 3He in Anisotropic Aerogel

    Full text link
    We have found a new stable spin state in the A-like phase of superfluid 3He confined to intrinsically anisotropic aerogel. The state can be formed by radiofrequency excitation applied while cooling through the superfluid transition temperature and its NMR properties are different from the standard A-like phase obtained in the limit of very small excitation. It is possible that this new state is formed by textural domain walls pinned by aerogel.Comment: 9 pages, 3 figures. Submitted to J. of Low Tem. Phys. (QFS2007 Proceedings

    Manipulating textures of rotating superfluid 3 He- A phase in a single narrow cylinder

    Get PDF
    We investigated order parameter textures of the rotating superfluid 3 He-A phase in a single narrow cylinder with a diameter of about 10 times the dipole coherence length by the cw-NMR method. It is theoretically proposed that in such a narrow cylinder, a few special textures will appear due to the confinement in a cylindrical geometry. We observed three types of NMR spectra in the A phase. The NMR spectra of the textures were identified by a comparison with the spin waves excited in the NMR potential using their numerically calculated resonance frequencies and relative intensities. We have established a method to selectively generate each one of the textures by controlling the conditions when the A phase was formed, such as the applied magnetic field, rotation angular velocity, and temperature

    Effects of rTMS of pre-supplementary motor area on fronto basal ganglia network activity during stop-signal task

    Get PDF
    Stop-signal task (SST) has been a key paradigm for probing human brain mechanisms underlying response inhibition, and the inhibition observed in SST is now considered to largely depend on a fronto basal ganglia network consisting mainly of right inferior frontal cortex, pre-supplementary motor area (pre-SMA), and basal ganglia, including subthalamic nucleus, striatum (STR), and globus pallidus pars interna (GPi). However, causal relationships between these frontal regions and basal ganglia are not fully understood in humans. Here, we partly examined these causal links by measuring human fMRI activity during SST before and after excitatory/inhibitory repetitive transcranial magnetic stimulation (rTMS) of pre-SMA. We first confirmed that the behavioral performance of SST was improved by excitatory rTMS and impaired by inhibitory rTMS. Afterward, we found that these behavioral changes were well predicted by rTMS-induced modulation of brain activity in pre-SMA, STR, and GPi during SST. Moreover, by examining the effects of the rTMS on resting-state functional connectivity between these three regions, we showed that the magnetic stimulation of pre-SMA significantly affected intrinsic connectivity between pre-SMA and STR, and between STR and GPi. Furthermore, the magnitudes of changes in resting-state connectivity were also correlated with the behavioral changes seen in SST. These results suggest a causal relationship between pre-SMA and GPi via STR during response inhibition, and add direct evidence that the fronto basal ganglia network for response inhibition consists of multiple top-down regulation pathways in humans

    Phase diagram of superfluid 3He in "nematically ordered" aerogel

    Full text link
    Results of experiments with liquid 3He immersed in a new type of aerogel are described. This aerogel consists of Al2O3 strands which are nearly parallel to each other, so we call it as a "nematically ordered" aerogel. At all used pressures a superfluid transition was observed and a superfluid phase diagram was measured. Possible structures of the observed superfluid phases are discussed.Comment: 6 pages, 8 figures. Submitted to Pis'ma v ZhETF (JETP Letters

    Assessing the Forms and Functions of Aggression Using Self-Report: Factor Structure and Invariance of the Peer Conflict Scale in Youths

    Get PDF
    This study examined the structure of a self-report measure of the forms and functions of aggression in 855 adolescents (582 boys, 266 girls) aged 12 to 19 years recruited from high school, detained, and residential settings. The Peer Conflict Scale (PCS) is a 40-item measure that was developed to improve upon existing measures and provide an efficient, reliable, and valid assessment of four dimensions of aggression (i.e., reactive overt, reactive relational, proactive overt, and proactive relational) in youths. Confirmatory factor analyses showed that a 4-factor model represented a satisfactory solution for the data. The factor structure fit well for both boys and girls and across high school, detained, and residential samples. Internal consistency estimates were good for the 4 factors, and they showed expected associations with externalizing variables (i.e., arrest history, callous-unemotional traits, and delinquency). Reactive and proactive subtypes showed unique associations consistent with previous literature. Implications for the use of the PCS to assess aggression and inform intervention decisions in diverse samples of youths are discussed

    Pseudo-single crystal electrochemistry on polycrystalline electrodes : visualizing activity at grains and grain boundaries on platinum for the Fe2+/Fe3+ redox reaction

    Get PDF
    The influence of electrode surface structure on electrochemical reaction rates and mechanisms is a major theme in electrochemical research, especially as electrodes with inherent structural heterogeneities are used ubiquitously. Yet, probing local electrochemistry and surface structure at complex surfaces is challenging. In this paper, high spatial resolution scanning electrochemical cell microscopy (SECCM) complemented with electron backscatter diffraction (EBSD) is demonstrated as a means of performing ‘pseudo-single-crystal’ electrochemical measurements at individual grains of a polycrystalline platinum electrode, while also allowing grain boundaries to be probed. Using the Fe2+/3+ couple as an illustrative case, a strong correlation is found between local surface structure and electrochemical activity. Variations in electrochemical activity for individual high index grains, visualized in a weakly adsorbing perchlorate medium, show that there is higher activity on grains with a significant (101) orientation contribution, compared to those with (001) and (111) contribution, consistent with findings on single-crystal electrodes. Interestingly, for Fe2+ oxidation in a sulfate medium a different pattern of activity emerges. Here, SECCM reveals only minor variations in activity between individual grains, again consistent with single-crystal studies, with a greatly enhanced activity at grain boundaries. This suggests that these sites may contribute significantly to the overall electrochemical behavior measured on the macroscale

    Energy spectra of fractional quantum Hall systems in the presence of a valence hole

    Full text link
    The energy spectrum of a two-dimensional electron gas (2DEG) in the fractional quantum Hall regime interacting with an optically injected valence band hole is studied as a function of the filling factor ν\nu and the separation dd between the electron and hole layers. The response of the 2DEG to the hole changes abruptly at dd of the order of the magnetic length λ\lambda. At d<λd<\lambda, the hole binds electrons to form neutral (XX) or charged (XX^-) excitons, and the photoluminescence (PL) spectrum probes the lifetimes and binding energies of these states rather than the original correlations of the 2DEG. The ``dressed exciton'' picture (in which the interaction between an exciton and the 2DEG was proposed to merely enhance the exciton mass) is questioned. Instead, the low energy states are explained in terms of Laughlin correlations between the constituent fermions (electrons and XX^-'s) and the formation of two-component incompressible fluid states in the electron--hole plasma. At d>2λd>2\lambda, the hole binds up to two Laughlin quasielectrons (QE) of the 2DEG to form fractionally charged excitons hhQEn_n. The previously found ``anyon exciton'' hhQE3_3 is shown to be unstable at any value of dd. The critical dependence of the stability of different hhQEn_n complexes on the presence of QE's in the 2DEG leads to the observed discontinuity of the PL spectrum at ν=13\nu={1\over3} or 23{2\over3}.Comment: 16 pages, 14 figures, submitted to PR

    Longitudinal Diffusion Tensor Imaging Resembles Patterns of Pathology Progression in Behavioral Variant Frontotemporal Dementia (bvFTD)

    Get PDF
    Objective: Recently, the characteristic longitudinal distribution pattern of the underlying phosphorylated TDP-43 (pTDP-43) pathology in the behavioral variant of frontotemporal dementia (bvFTD) excluding Pick's disease (PiD) across specific brain regions was described. The aim of the present study was to investigate whether in vivo investigations of bvFTD patients by use of diffusion tensor imaging (DTI) were consistent with these proposed patterns of progression. Methods: Sixty-two bvFTD patients and 47 controls underwent DTI in a multicenter study design. Of these, 49 bvFTD patients and 34 controls had a follow-up scan after ~12 months. Cross-sectional and longitudinal alterations were assessed by a two-fold analysis, i.e., voxelwise comparison of fractional anisotropy (FA) maps and a tract of interest-based (TOI) approach, which identifies tract structures that could be assigned to brain regions associated with disease progression. Results: Whole brain-based spatial statistics showed white matter alterations predominantly in the frontal lobes cross-sectionally and longitudinally. The TOIs of bvFTD neuroimaging stages 1 and 2 (uncinate fascicle—bvFTD pattern I; corticostriatal pathway—bvFTD pattern II) showed highly significant differences between bvFTD patients and controls. The corticospinal tract-associated TOI (bvFTD pattern III) did not differ between groups, whereas the differences in the optic radiation (bvFTD pattern IV) reached significance. The findings in the corticospinal tract were due to a “dichotomous” behavior of FA changes there. Conclusion: Longitudinal TOI analysis demonstrated a pattern of white matter pathways alterations consistent with patterns of pTDP-43 pathology
    corecore