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Stop-signal task (SST) has been a key paradigm for probing human brain mechanisms underlying response inhibition, and the inhibition
observed in SST is now considered to largely depend on a fronto basal ganglia network consisting mainly of right inferior frontal cortex,
pre-supplementary motor area (pre-SMA), and basal ganglia, including subthalamic nucleus, striatum (STR), and globus pallidus pars
interna (GPi). However, causal relationships between these frontal regions and basal ganglia are not fully understood in humans. Here, we
partly examined these causal links by measuring human fMRI activity during SST before and after excitatory/inhibitory repetitive
transcranial magnetic stimulation (rTMS) of pre-SMA. We first confirmed that the behavioral performance of SST was improved by
excitatory rTMS and impaired by inhibitory rTMS. Afterward, we found that these behavioral changes were well predicted by rTMS-
induced modulation of brain activity in pre-SMA, STR, and GPi during SST. Moreover, by examining the effects of the rTMS on resting-
state functional connectivity between these three regions, we showed that the magnetic stimulation of pre-SMA significantly affected
intrinsic connectivity between pre-SMA and STR, and between STR and GPi. Furthermore, the magnitudes of changes in resting-state
connectivity were also correlated with the behavioral changes seen in SST. These results suggest a causal relationship between pre-SMA
and GPi via STR during response inhibition, and add direct evidence that the fronto basal ganglia network for response inhibition consists
of multiple top-down regulation pathways in humans.

Key words: partial correlation; QPS; response cancellation; response inhibition

Introduction
The stop-signal task (SST; Logan and Cowan, 1984) has been
used in investigations of neural mechanisms underlying response
inhibition (Aron et al., 2003; Rubia et al., 2003; Chambers et al.,
2006; Li et al., 2006; Chikazoe et al., 2009). In the task, partici-
pants must inhibit their already initiated responses when they
encounter occasional stop signals (Fig. 1A).

The successful response inhibition is now considered to de-
pend mainly on the activity of right inferior frontal cortex
(rtIFC), pre-supplementary motor area (pre-SMA), and basal
ganglia including subthalamic nucleus (STN), striatum (STR),

and globus pallidus pars interna (GPi). For example, a line of
studies has reported that inhibition performance was affected by
a chronic or temporal lesion in rtIFC (Aron et al., 2003; Cham-
bers et al., 2007; Verbruggen et al., 2010; Obeso et al., 2013; Zand-
belt et al., 2013) and pre-SMA (Floden and Stuss, 2006; Nachev et
al., 2007; Chen et al., 2009; Hsu et al., 2011; Cai et al., 2012; Obeso
et al., 2013).

Neuroimaging research has also shown that successful inhibi-
tion was accompanied by increases in the activity of rtIFC (Aron
and Poldrack, 2006; Aron et al., 2007; Zheng et al., 2008; Cai and
Leung, 2009; Swann et al., 2009, 2013; Chatham et al., 2012),
pre-SMA (Aron and Poldrack, 2006; Aron et al., 2007; Tabu et al.,
2011; Swann et al., 2012; Cai et al., 2014), STN (Aron and Pol-
drack, 2006; Aron et al., 2007; Isoda and Hikosaka, 2008; Li et al.,
2008; Chatham et al., 2012; Ray et al., 2012; Alegre et al., 2013),
and GPi (Aron and Poldrack, 2006; Schmidt et al., 2013). More-
over, STR and STN are supposed to directly receive and transmit
cortical inputs to more downstream neurons (Albin et al., 1989;
Alexander and Crutcher, 1990; Nambu et al., 2002; Hikosaka and
Isoda, 2010; Aron et al., 2014).

As a whole, these findings indicate that a fronto basal ganglia
network consisting of these five regions supports the successful
response inhibition in SST (Nambu et al., 2002; Voytek, 2006;
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Chambers et al., 2009; Hikosaka and Isoda, 2010; Juan and
Muggleton, 2012; Aron et al., 2014).

However, some parts of the causal connections in the network
remain unclear. In particular, functional influences of pre-SMA
on this functional network are elusive in humans (Aron et al.,
2014). Recent studies using repetitive transcranial magnetic stim-
ulation (rTMS) have suggested that rtIFC activity is tightly asso-
ciated with pre-SMA activity (Neubert et al., 2010), and that, in
concert with rtIFC, pre-SMA sharpens the selectivity of motor
activation and facilitates inhibitory motor control (Duque et al.,
2013). Despite these notable advances, it is still controversial
whether pre-SMA can induce response inhibition without rtIFC
activity, or is simply activated after rtIFC activation (Duann et al.,
2009; Swann et al., 2012).

Here, we aimed at directly examining this causal influence of
pre-SMA on the fronto basal ganglia network by probing brain
activity changes after administering rTMS of the region. To focus
on the effects on the network, we analyzed the activity of the five
functionally defined constituent regions (rtIFC, pre-SMA, STN,
STR, and GPi).

Materials and Methods
Participants. Ten healthy, adult, right-handed male volunteers (28 – 44
years old) participated in the current study after providing their written
informed consent. None of them had any neurological, psychiatric, other
medical problems, or contraindications to TMS (Wassermann, 1998;
Rossi et al., 2009). The procedure of rTMS complied with the guidelines
for TMS experimentation on humans (Drummond, 2009), and the fMRI
and rTMS procedures were approved by the Institutional Review Board
of the School of Medicine, The University of Tokyo. Because 1 of the 10
participants could not complete the entire experimental protocol due to his
relocation, we analyzed data obtained from the remaining 9 participants.

Overall design. To induce long-lasting changes in brain activity, we
used quadripulse rTMS (QPS), the effects of which are supposed to con-
tinue for a relatively long time after the stimulation (�30 min to 2 h;
Hamada et al., 2007, 2008; Shirota et al., 2010; Nakamura et al., 2011;
Nakatani-Enomoto et al., 2012; Watanabe et al., 2014).

Each participant underwent the following three types of experimental
conditions, with interval of �1 week: excitatory, inhibitory, and sham
rTMS. In all, the participants first performed SST in an fMRI scanner
(�30 min), and afterward received one type of rTMS of pre-SMA (�30
min; Fig. 1B). Immediately after the stimulation (�10 min), they con-
ducted another SST in the fMRI scanner (�30 min). Resting-state fMRI

(rsfMRI) signals were recorded immediately after the post-rTMS SST
(�10 min). The order of the three rTMS conditions was pseudo-
randomized and counterbalanced across participants. The participants
were blind to the types of the stimulus they were receiving. The intensity
and location of rTMS were individually determined before the beginning
of the entire experiment.

In the analysis, we assessed rTMS-induced behavioral/neural effects by
comparing changes observed in the real rTMS conditions with those
observed in the sham condition. The current experiment design con-
tained an �1 h gap between pre-rTMS and post-rTMS SST sessions,
which itself could affect behaviors and brain activity responses (e.g.,
tiredness might deteriorate individual attention, and worsen behavioral
and neural responses during the SST). To minimize such confounding,
we adopted the differences in responses between pre-rTMS and post-
rTMS sessions in the sham condition as the baseline level.

rTMS procedures. Individual parameters of rTMS were determined
through prior single-pulse TMS experiments with a hand-held figure-of-
eight coil (9 cm external diameter at each wing; Magstim Co., Ltd.). We
measured the active motor threshold (AMT) for the right first dorsal
interosseous (FDI) muscle, which was defined as the lowest intensity that
evoked a small response (�100 �V) when participants maintained a
slight contraction of the right FDI (�10% of the maximum voluntary
contraction) in �5 of 10 consecutive trials. The intensity of rTMS in the
main experiment was set at 90% of AMT. The mean (�SEM) AMT
across participants was 37.5 � 7.2% maximum stimulator output.

The FDI response [i.e., motor evoked potentials (MEPs) of the FDI]
was recorded with pairs of Ag/AgCl surface cup electrodes (9 mm in
diameter) placed over the muscle belly (active) and the metacarpopha-
langeal joint of the index finger (reference; Hanajima et al., 2001). The
signals recorded by the electrodes were input to an amplifier (Biotop, GE
Marquette Medical Systems) through filters that were set at 100 Hz and 3
kHz, and, after digitization, were stored on a computer for later off-line
analyses (TMS BiStim tester, Medical Try System). The optimal site for
brain stimulation for the right FDI muscle was individually determined
as the area eliciting the largest MEP.

Using this predetermined intensity, we performed quadripulse rTMS,
which consisted of a train of four monophasic magnetic pulses, and was
delivered with four magnetic stimulators connected to a specially de-
signed combining module (Magstim 2002, Magstim Co., Ltd.). The in-
terburst interval was set at 5 s. One rTMS block had 360 consecutive
bursts, each of which comprised four magnetic pulses separated by inter-
stimulus intervals of 5 or 50 ms, respectively, for excitatory or inhibitory
rTMS. Sham stimulations were conducted with the two sets of figure-of-
eight coils. One set was placed right behind the participants but was
concealed from the participants’ view. This figure-of-eight coil was con-

Figure 1. Experiment design and behavioral results. A, SST. Participants underwent a standard SST. In most trials, go signals appeared, and participants were instructed to quickly press a button.
Occasionally, a stop signal appeared after a go signal, in which participants must withhold the button press. B, Overall experiment design. Participants underwent three types of rTMS conditions with
at least a 1 week interval: excitatory, inhibitory, and sham rTMS conditions. They first conducted SST in an fMRI scanner (pre-rTMS session) before each rTMS conditioning. They then performed
another SST and underwent a resting-state fMRI recording (post-rTMS session). C, ROIs. Five ROIs were determined based on a brain activation map contrasting successful stop and go trials with fMRI
activity during pre-rTMS sessions (Table 1). Rt, Right. D, Behavioral results. SSRT was reduced by the excitatory rTMS (i.e., improvement of response inhibition) and was prolonged by the inhibitory
rTMS (i.e., impairment of response inhibition). The SSRT change was calculated as (SSRTpost-rTMS � SSRTpre-rTMS)/SSRTpre-rTMS. The error bars indicate the SEM.
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nected to the same TMS machine and was activated at 200 Hz during the
sham condition to produce acoustic effects that were comparable to
those during the real rTMS. The other coil set was unconnected to the
stimulation settings, which was kept blind for the participants. This coil
was held over the same position of the head as the real rTMS.

Based on our previous study (Chikazoe et al., 2009), the coordinates of
the stimulated site (i.e., pre-SMA) were set at [6, 6, 62] in Montreal
Neurological Institute (MNI) coordinates. We determined the site for
each participant using an individual anatomical brain image: the indi-
vidual images were first normalized to a standard image with a linear
normalization algorithm implemented in SPM software (www.fil.ion.
ucl.ac.uk/spm/). Based on an inverse of the transforming matrix opti-
mized in the linear normalization, we then calculated the original coor-
dinates corresponding to [6, 6, 62] in MNI coordinates and marked the
site on the individual non-normalized brain image. Finally, using the
mark as a guide, we determined the target site on the individual head with
a frameless stereotactic optical tracking neuronavigation system (Brain-
sight, Rogue Research).

Stop-signal task. The current SST conventionally consisted of “go,”
“stop,” and fixation trials (Logan and Cowan, 1984; Aron et al., 2003; Fig.
1A). In the fixation trials (1.7 s), participants were instructed to pay
attention to a small cross on the center of the screen. After the fixation
trial, they were presented with a circle in �2.5° � 2.5° of visual angle. In
go trials, the color of the circle did not change, and participants were
required to quickly press a button during the trials with the right index
finger; the circle vanished at the button press or after 800 ms elapsed, and
the trial terminated. In stop trials, the color of the circle changed to a
different one after a so-called stop-signal delay (SSD); participants were
asked to withhold the button press. The trials were terminated by mis-
takenly pressing the button or at 800 ms after the appearance of the stop
signal. The SSD varied from one stop trial to the next one according to a
staircase procedure (initial SSD, 200 ms; Band et al., 2003): when partic-
ipants successfully withheld their response, the SSD increased by 33 ms; if
they failed, the SSD decreased by 33 ms. The number of stop trials was set
at 20% of the entire number of trials, and they appeared in a pseudo-
random order. The fixation trials were inserted between each go/stop
trial.

The participants were instructed to quickly respond to go signals but
were also asked to keep in mind that occasional stop signals could appear.
Before the fMRI scanning, the participants underwent a sufficient num-
ber of practice trials. In each of the pre-rTMS and post-rTMS sessions,
participants completed six SST runs, each of which continued for 3 min
and consisted of 72.1 � 12.5 trials (across all the participants and re-
corded experiments). The colors of go/stop signals (blue/green) were
counterbalanced across the participants.

Behavioral analysis. The behavioral performance of the SST was quan-
tified as the stop-signal reaction time (SSRT; Logan and Cowan, 1984;
Congdon et al., 2012). First, we ranked reaction time (RT) for go trials,
and selected the Nth RT (representative RT), where N was calculated by
multiplying the number of stop trials by the probability of mistakes in
stop trials. We then estimated SSRT through subtraction of the average
SSD from the representative RT. The rTMS-induced changes in SSRT
were evaluated as (SSRTpost-rTMS � SSRTpre-rTMS)/SSRTpre-rTMS.

fMRI scanning and analysis. MRI scanning was performed with a 3 T
MRI scanner with a one-channel head coil (Signa HDxt 3.0T, GE Health-
care). T1-weighted structural images were obtained as the anatomical
reference (0.81 � 0.81 � 1.20 mm 3), whereas functional images were
obtained using gradient echo echoplanar sequences (TR � 3 s; TE � 35
ms; flip angle � 90°; 3 � 3�3 mm 3; 40 slices). The first five functional
images in each run were discarded to minimize the effects of transient
magnetic saturation.

The functional images were first realigned, slice timing corrected, nor-
malized to the default template with interpolation to a 2 � 2 � 2 mm 3

space, and spatially smoothed [full-width at half-maximum (FWHM), 8
mm, Gaussian filter] using SPM8 software. The preprocessed data were
submitted to single-level analysis based on a general linear model, into
which three types of event timing (“go,” “successful stop,” and “failed
stop” trials) were coded using the canonical hemodynamic function. We
separately performed this single-level analysis for pre-rTMS/post-rTMS

sessions, and estimated inhibition-related brain activity by contrasting
successful stop and go trials or contrasting successful stop and failed stop
trials.

ROI definition. In the main analysis, we functionally defined regions of
interest (ROIs) based on fMRI activity during pre-rTMS sessions. For
precise and robust determination, we searched for the brain activations
in successful stop versus go contrast: first, at a single-participant level, we
estimated the contrasted activation maps for all the rTMS conditions
(i.e., excitatory, inhibitory, and sham conditions); we then estimated a
group-level activation map and confirmed activation of the fronto basal
ganglia network during response inhibition; and, finally, based on this
map, we defined the coordinates of five ROIs (Fig. 1C; Table 1).

The ROIs were defined as a sphere with a 4 mm radius. Regarding STN,
previous anatomical studies suggest a smaller or larger ROI volume: 2.5
mm radius was adopted by Coxon et al., 2012, whereas a 5 mm radius was
by Forstmann et al., 2012. Although we examined both cases, the main
analysis used a 4-mm-radius sphere as an ROI definition for STN to
control detectability between different ROIs.

ROI analysis and whole-brain analysis. Using these ROIs, we calculated
six types of brain activity for each participant: (pre-rTMS/post-rTMS) �
(excitatory/inhibitory/sham rTMS condition). For excitatory and inhib-
itory rTMS conditions, we first performed a repeated-measures two-way
ANOVA of brain activity [(pre-rTMS/post-rTMS) � (real rTMS/sham)]
and assessed rTMS effects as an interaction of the ANOVA. We then
directly evaluated the rTMS effects with post hoc t tests.

In group-level whole-brain analysis, we performed t tests using the
successful stop � failed stop contrast images. Technically, increases in-
duced by excitatory rTMS were calculated as [(successful � failed
stop)post-rTMS � (successful � failed stop)pre-rTMS]excitatory rTMS � [(suc-
cessful � failed stop)post-rTMS � (successful � failed stop)pre-rTMS]sham,
whereas decreases induced by inhibitory rTMS were quantified as [(success-
ful � failed stop)post-rTMS � (successful � failed stop)pre-rTMS]sham � [(suc-
cessful� failedstop)post-rTMS �(successful� failedstop)pre-rTMS]inhibitory rTMS.

fMRI scanning and analysis for resting state. Images for rsfMRI analysis
were recorded in two runs with 5 min of rest with the same protocol as
the functional images obtained during SST. The first five images of
each run were discarded to minimize transient magnetic saturation
effects.

The rsfMRI images underwent preprocessing consisting of realign-
ment, slice-timing correction, and normalization to the default template
with interpolation to a 2 � 2 � 2 mm 3 space using SPM8 software. We
then performed temporal bandpass filtering (0.01– 0.1 Hz) with in-house
MATLAB scripts and conducted spatial smoothing (FWHM, 8 mm,
Gaussian filter) using SPM8 software. The images were corrected for
participants’ head motion and the run effect. Considering recent debates
on simple regression out of whole-brain signals (Van Dijk et al., 2010;
Hayasaka, 2013), we corrected such global signals though a principle
component analysis (Chai et al., 2012) using CompCor (Behzadi et al.,
2007) in the CONN toolbox (Whitfield-Gabrieli and Nieto-Castanon,
2012).

We then extracted time series of rsfMRI signals from the five ROIs and
estimated resting-state functional connectivity (rsFC) by calculating
Pearson’s correlation coefficients between the time series. Because the
current fronto basal ganglia network comprised the five ROIs and had 10
potential rsFC values, we calculated correlation coefficients of all these
rsFC values and then transformed the coefficients into z-values with
Fisher’s transformation. The effects of rTMS were quantified using these
z-values.

Table 1. Stop-related regions: successful stop – go trials in pre-TMS sessions

Anatomical label Hemisphere

MNI coordinates

t valuex y z

rtIFC Right 48 �16 24 5.9
Pre-SMA Right 6 8 58 5.4
STN Right 8 �16 0 4.7
STR Right 24 2 8 4.6
GPi Right 18 6 0 3.2
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We also performed whole-brain analysis of rsFC with pre-SMA: using
the preprocessed whole-brain resting-state images, we first calculated
single participant-level rsFC maps by setting pre-SMA as a seed for each
rTMS condition; we then estimated the group-level difference in rsFC
with pre-SMA between the real rTMS conditions and the sham
condition.

Finally, we examined partial correlations among pre-SMA, STR, and
STN to more closely specify rTMS-induced changes in functional inter-
actions. The partial correlation between regions A and B controlled by
region C was calculated as follows:

�rAB � rACrBC	��1 � rAC
2 �1 � rBC

2 ,

where rAB represents the rsFC between regions A and B.
Confirmatory analysis using anatomical ROIs. For confirmatory analy-

sis, we repeated all the ROI analyses using anatomically defined ROIs (see
Fig. 5A). Different from the functional ROIs, these newly defined ana-
tomical ROIs are independent of the current fMRI recording and are free
from concerns about circular analysis. This analysis was also expected to
ease another concern due to the difference between the fMRI contrast
used in defining the functional ROIs (i.e., successful stop � go) and one
used in the main ROI analysis above (i.e., successful stop � failed stop).

The MNI coordinates of pre-SMAana and STRana (ana: anatomical
ROI) were defined as [6, 6, 62] and [16, 2, 10], respectively, based on our
previous study (Chikazoe et al., 2009). The center of rtIFCana was set at
coordinates [48, 16, 18] according to a previous study (Levy and Wagner,
2011). The coordinates of STNana and GPiana were defined as [10, �12,
�8] and [14, 6, 0], respectively, based on a previous anatomical study
(Forstmann et al., 2012) and a meta-analysis (Swick et al., 2011). These
ROIs were spheres with a 4 mm radius.

Results
Behavior
The participants accurately responded to go signals with �50%
correct responses to stop signals (Table 2), which is comparable
to previous reports (Aron and Poldrack, 2006; Li et al., 2006) and
had no significant difference between rTMS conditions (p �
0.16, paired t tests, between the real rTMS conditions and sham
condition). Significant differences across pre/post sessions or
across rTMS conditions were not observed in RT, mean SSD, or
mean trial length (RT, p � 0.09; mean SSD, p � 0.10; mean trail
length, p � 0.12; paired t tests).

The current experiment could reproduce previous behavioral
reports in which excitatory/inhibitory stimulation on pre-SMA
decreased/increased SSRT, respectively (Chen et al., 2009; Hsu et
al., 2011; Cai et al., 2012; Obeso et al., 2013; Fig. 1D). Compared
with the sham condition, SSRT significantly decreased after the
excitatory rTMS (p � 0.05, t(8) � 1.8, one-tailed paired t test) and
significantly increased after the inhibitory rTMS (p � 0.04, t(8) �
2.0, one-tailed paired t test). SSRT in pre-rTMS sessions showed
no significant differences between the real rTMS and sham con-
ditions (p � 0.09), which suggests that the pre-rTMS baseline of
SSRT was comparable between different conditions.

ROI analysis
Using functionally defined ROIs (Fig. 1C; Table 1), we first ex-
amined the effects of rTMS on brain activity defined by a success-
ful stop– go contrast (Fig. 2A), but could not find significant
effects except in pre-SMA activity (excitatory, p � 0.02; inhibi-
tory, p � 0.04; post hoc paired t tests). As discussed later, the
results might be due to the current task design with no-choice go
trials and fixed intertrial intervals (ITIs).

We therefore calculated the neural effects of rTMS with a
successful stop–failed stop contrast and found significant modu-
lations in three of the five ROIs (Fig. 2B). First, pre-SMA activity
was significantly modulated. Compared with the sham condi-
tion, the activity increased after the excitatory rTMS [p � 0.01,
F(1,32) � 6.7, an interaction in a repeated-measures two-way
ANOVA, (pre-rTMS/post-rTMS) � (rTMS/sham); p � 0.0001,
t(8) � 4.6, post hoc paired t test between (post � pre)rTMS and
(post � pre)sham] and decreased after the inhibitory rTMS (p �
0.004, F(1,32) � 9.5, ANOVA; p � 0.0001, t(8) � 6.4, post hoc
paired t test).

In STR and GPi, qualitatively similar changes were ob-
served. STR activity increased after the excitatory rTMS ( p �
0.01, F(1,32) � 7.1, ANOVA; p � 0.001, t(8) � 4.5, post hoc paired
t test) and decreased after the inhibitory rTMS (p � 0.04,
F(1,32) � 4.7, ANOVA; p � 0.04, t(8) � 2.0, post hoc paired t test);
in GPi, the excitatory rTMS increased the activity (p � 0.009,
F(1,32) � 7.9, ANOVA; p � 0.00006, t(8) � 6.9, post hoc paired
t test), and the inhibitory rTMS decreased it (p � 0.01, F(1,32) �
7.3, ANOVA; p � 0.01, t(8) � 2.9, post hoc paired t test).

In rtIFC and STN, we could not detect significant effects of
either type of rTMS (rtIFC: p � 0.4, ANOVA; p � 0.3, paired t
tests; STN: p � 0.6, ANOVA; p � 0.6, paired t tests).

Whole-brain analysis
To confirm the spatial specificity of these rTMS effects seen in the
ROI analysis, we performed whole-brain analyses. After correc-
tion for multiple comparisons (p 
 0.05, corrected by familywise
error rate), no significant neural effects of rTMS were detected;
however, under a moderate statistical threshold (Puncorrected 

0.005; �10 voxels; Table 3), we found significant activity changes
that were consistent with the results of the ROI analysis: activity
of brain areas close to the predefined pre-SMA, STR, and GPi
increased after the excitatory rTMS (Fig. 2C) and decreased after
the inhibitory rTMS (Fig. 2D). Areas near rtIFC and STN did not
show such rTMS-induced activity modulations.

Correlation between behavior and activity change
These activity modulations in pre-SMA, STR, and GPi were sig-
nificantly correlated with the rTMS-induced behavioral changes
(Fig. 3). In the excitatory rTMS condition, the activity changes of
the three ROIs were negatively correlated with the effects on
SSRT (pre-SMA: r � �0.70, p � 0.04; STR: r � �0.69, p � 0.04;

Table 2. Behavioral results

Excitatory rTMS Inhibitory rTMS Sham

Pre Post Pre Post Pre Post

SSRT (ms) 204.8 � 17.4 177.1 � 21.4 175.1 � 22.4 195.3 � 21.7 191.4 � 19.2 187.2 � 23.1
SSD (ms) 334.5 � 45.5 359.6 � 32.3 382.8 � 30.1 333.4 � 36.8 350.4 � 32.9 350.5 � 39.3
Response time (ms) 539.5 � 39.5 547.5 � 34.0 560.0 � 26.1 512.0 � 27.2 545.8 � 30.8 541.5 � 38.2
Correct response to Go signal (%) 95.2 � 1.3 91.6 � 6.1 97.5 � 0.6 97.3 � 1.2 96.6 � 1.8 95.9 � 1.5
Correct response to Stop signal (%) 55.6 � 3.0 52.7 � 1.5 52.8 � 1.1 52.8 � 0.6 52.8 � 1.0 53.1 � 1.0

Data are reported as the mean � SEM.
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GPi: r � �0.71, p � 0.03; Fig. 3A). In the inhibitory rTMS con-
dition, qualitatively the same associations were observed (pre-
SMA: r � �0.71, p � 0.03; STR: r � �0.69, p � 0.04; GPi:
r � �0.71, p � 0.03; Fig. 4B). In contrast, no significant correla-
tion was seen in rtIFC and STN (rtIFC, p � 0.3; STN, p � 0.7).
These activity– behavior associations imply that increases in
brain activity in pre-SMA, STR, and GPi would improve behav-
ioral capability for response inhibition.

Effects on rsFC
We also evaluated rTMS effects on intrinsic functional interac-
tions among these five ROIs. Of the 10 rsFCs constituting the
fronto basal ganglia network, only three rsFCs showed significant
changes after rTMS (pre-SMA–STR, STR–GPi, and GPi–pre-

SMA connectivity; Fig. 4A). The magnitudes of the three rsFCs
increased after the excitatory rTMS and decreased after the inhib-
itory rTMS (excitatory/inhibitory: pre-SMA–STR, p � 0.007/
0.007, t(8) � 3.1/3.1; STR–GPi, p � 0.006/0.03, t(8) � 3.3/2.3;
GPi–pre-SMA, p � 0.02/0.03, t(8) � 2.4/2.3; paired t tests). The
changes observed in the three rsFCs were also significantly differ-
ent between the excitatory and inhibitory rTMS conditions (pre-
SMA–STR: p � 0.0006, t(8) � 4.8; STR–GPi: p � 0.006, t(8) � 3.1;
GPi–pre-SMA: p � 0.006, t(8) � 3.2).

Two other rsFCs (pre-SMA–rtIFC and pre-SMA–STN)
showed significant differences only between the excitatory and
inhibitory rTMS conditions (p 
 0.03, paired t tests; Fig. 4A), but
the other rsFCs were not significantly affected by the rTMS (Fig.
4B). The spatial specificity of these results was partially confirmed
by a whole-brain analysis of rsFC with pre-SMA as a seed (Fig.
4C). In both of the rTMS conditions, we found moderate rsFC
changes around STR and GPi (Puncorrected 
 0.005, �10 voxels).

Effects on partial correlations
Furthermore, we more precisely quantified the rTMS effects on
functional interactions between the three highly interacted ROIs
(i.e., pre-SMA, STR, and GPi) by calculating partial correlations
between them; in fact, when brain regions are mutually con-
nected, calculations based on Pearson’s correlation coefficients
might detect spurious functional connections. Consequently, signif-
icant effects were found only in pre-SMA–STR and STR–GPi inter-
actions (excitatory/inhibitory: pre-SMA–STR, p � 0.02/0.04, t(8) �
2.3/2.0; STR–GPi, p � 0.04/0.04, t(8) � 2.1/2.0; paired t tests; Fig.
4D). The magnitudes of these connectivity changes were signifi-
cantly correlated with the SSRT changes (excitatory/inhibitory:
pre-SMA–STR, r � �0.73/�0.69, p � 0.02/0.04; STR–GPi, r �

Figure 2. ROI analysis. A, rTMS effects on [successful stop�go] activity. The y-axis represents the activity calculated as [(successful stop�go)post-rTMS� (successful stop�go)pre-rTMS]excitatory/inhibitory�
[(successful stop�go)post-rTMS � (successful stop�go)pre-rTMS]sham. We observed significant rTMS effects only in pre-SMA. The error bars indicate the SEM. B, rTMS effects on [successful stop� failed stop]
activity. The y-axis represents [(successful � failed stop)post-rTMS � (successful � failed stop)pre-rTMS]excitatory/inhibitory � [(successful � failed stop)post-rTMS � (successful � failed stop)pre-rTMS]sham activity.
Significant rTMS effects were observed in pre-SMA, STR, and GPi. **p 
 0.01, one-sample t test. C, Effects of the excitatory rTMS. The statistical parametric map shows the results of group-level analysis of
rTMS-induced increases in brain activity that were defined as [(successful� failed stop)post-rTMS � (successful� failed stop)pre-rTMS]excitatory rTMS � [(successful� failed stop)post-rTMS � (successful� failed
stop) pre-rTMS]sham. D, Effects of the inhibitory rTMS. The statistical parametric map shows the results of a group-level analysis of rTMS-induced decreases in brain activity that was defined as [(successful� failed
stop)post-rTMS � (successful � failed stop)pre-rTMS]sham � [(successful � failed stop)post-rTMS � (successful � failed stop)pre-rTMS]inhibitory rTMS. Rt, Right.

Table 3. Results of whole-brain analysis

Anatomical label Hemisphere

MNI coordinates

t valuex y z

Excitatory rTMS–sham
Pre-SMA Left �8 10 44 4.9
Insula Right 38 18 �12 4.9
Pre-SMA Right 4 8 42 4.2
GPi Right 16 4 2 3.8
STR Right 26 2 6 3.6

Sham–inhibitory rTMS
Pre-SMA Left �4 2 56 4.8
Pre-SMA Right 8 12 56 4.7
Inferior occipital lobule Left �44 �72 �8 4.6
Precuneus Left �12 �68 54 3.9
STR Right 24 �2 8 3.6
GPi Right 14 6 �2 3.5

This table shows activations under a relatively moderate statistical threshold (Puncorrected 
 0.005; �10 voxels).
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�0.76/�0.73, p � 0.01/0.02; Fig. 4E,F). In contrast, no signifi-
cant correlation with behavioral changes was seen in pre-SMA–
GPi connectivity (p � 0.27).

Confirmatory analysis
Finally, we examined these neural effects of rTMS by adopting
new anatomically defined ROIs (Fig. 5A) and successfully ob-
served qualitatively the same effects (Fig. 5B–H).

First, significant rTMS effects on brain activity were seen only
in pre-SMAana, STRana, and GPiana in both of the excitatory and
inhibitory conditions (p 
 0.001, paired t tests; Fig. 5B). The
activity changes in the three ROIs showed significantly negative
correlations with the SSRT changes (excitatory rTMS condition:
r 
 �0.69; p 
 0.04; Fig. 5C; inhibitory rTMS condition: r 

�0.65; p � 0.05; Fig. 5D). Moreover, compared with the sham
condition, the rTMS induced significant changes in rsFC only
between pre-SMAana, STRana, and GPiana (p 
 0.05; Fig. 5E). In
particular, the partial correlation analysis showed that the critical
changes in functional interactions were induced in pre-SMAana–
STRana and STRana–GPiana pathways (Fig. 5F). These partial
correlation changes were, furthermore, predictive of the rTMS-
induced SSRT modulations in both the excitatory (p 
 0.05; Fig.
5G) and inhibitory (p � 0.05; Fig. 5H) rTMS conditions. These
results were qualitatively unchanged even when we adopted dif-
ferent ROI sizes for STN.

Discussion
Using quadripulse rTMS, we examined causal effects of pre-SMA
activity on the fronto basal ganglia network during response in-
hibition. STR and GPi activity were affected by the stimulation of
pre-SMA activity, and the activity changes were correlated with
modulations of the behavioral performance of response inhibi-
tion. Moreover, pre-SMA–STR and STR–GPi functional interac-
tions were also modulated by rTMS of pre-SMA, and their
magnitudes were predictive of the behavioral influence. In con-
trast, such causal effects were not observed in the activity and
functional interactions involving rtIFC and STN. These results

suggest that rTMS of pre-SMA can behaviorally change response
inhibition through modulating the activity of the pre-SMA–
STR–GPi pathway, and provide evidence for the top-down regu-
lation from pre-SMA to GPi via STR during successful response
inhibition.

The current behavioral observations are consistent with those
made in previous studies (Chen et al., 2009; Hsu et al., 2011; Cai
et al., 2012; Obeso et al., 2013). Regardless of the difference in
stimulation methods, these studies commonly reported that the
disruption of pre-SMA activity behaviorally impaired response
inhibition. Regarding SSRT, one study (Hsu et al., 2011) has
demonstrated that anodal transcranial direct current stimulation
can shorten the SSRT, and the current study is, to the best of our
knowledge, the first report showing a similar effect using rTMS.
These previous and present findings support the insight that pre-
SMA has a critical role in response inhibition.

The fronto basal ganglia network for response inhibition
mainly consists of the following three pathways: cortex–STN–
GPi pathway (hyperdirect pathway), cortex–STR–GPi (direct
pathway), and cortex–STR– globus pallidus pars externa (GPe)–
GPi pathway (indirect pathway; Nambu et al., 2002; Aron and
Poldrack, 2006; Chambers et al., 2009; Hikosaka and Isoda, 2010;
Aron et al., 2014). The current findings suggest that rTMS of
pre-SMA mainly affects the indirect pathway. First, the current
coactivation/deactivation of STR and GPi after stimulation of
pre-SMA seems to contradict the direct pathway model in which
STR inhibits GPi activity (Hikosaka and Isoda, 2010). In contrast,
the indirect pathway appears to be fitted to the current results. In
the pathway, successful response inhibition is achieved by excit-
atory interaction from cortical areas to STR, and inhibitory ef-
fects from STR to GPe and GPe to GPi (Nambu et al., 2002; Aron
et al., 2014); therefore, brain activity in cortical regions, STR, and
GPi should be modulated in the same direction, which is consis-
tent with the current findings (Fig. 2B–D).

If this interpretation is valid, the hyperdirect pathway and
indirect pathway could work independently. In fact, such an as-

Figure 3. Correlations between brain activity and behavior. A, Excitatory rTMS. The x-axes show brain activity changes, which were calculated as [(successful � failed stop)post-rTMS �
(successful � failed stop)pre-rTMS]excitatory rTMS � [(successful � failed stop)post-rTMS � (successful � failed stop)pre-rTMS]sham. The y-axes show SSRT changes. Each dot represents a record of each
participant. B, Inhibitory rTMS. The x-axes show brain activity changes of ROIs, which were calculated as [(successful � failed stop)post-rTMS � (successful � failed stop)pre-rTMS]sham �
[(successful � failed stop)post-rTMS � (successful � failed stop)pre-rTMS]inhibitory rTMS.
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Figure 4. Effects on rsFC. A, B, rTMS effects on rsFC in the fronto basal ganglia network. Significant changes were found only in rsFC between pre-SMA, STR, and GPi. rsFCs between pre-SMA and
rtIFC, and between pre-SMA and STN did not show such effects, but had significantly different values between the two types of rTMS condition. The error bars indicate the SEM. *p 
 0.05, **p 

0.01, paired t tests. C, Whole-brain rsFC analysis. The statistical parametric maps show the difference in rsFC with pre-SMA as a seed between the real rTMS and sham conditions. The maps show the
spatial specificity of the rsFC changes detected in the ROI analysis. D–F, Partial correlation among pre-SMA, STR, and GPi. In partial correlation analysis, significant rTMS effects were observed only
in interactions between pre-SMA and STR, and between STR and GPi. Partial correlation changes in both region pairs were significantly correlated with SSRT changes. *p 
 0.05, **p 
 0.01, paired
t tests.
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Figure 5. Confirmatory analysis using anatomical ROIs. A, Anatomical ROIs. The MNI coordinates of the ROIs were based on previous studies. pre-SMAana, [6, 6, 62]; STRana, [16, 2, 10] (Chikazoe
et al., 2009). rtIFCana, [48, 16, 18] (Levy and Wagner, 2011). STNana, [10,�12,�8] (Forstmann et al., 2012). GPiana, [14, 6, 0] (Swick et al., 2011). B, Effects on brain activity. The brain activity change
(y-axis) was defined as [(successful � failed stop)post-rTMS � (successful � failed stop)pre-rTMS]excitatory/inhibitory � [(successful � failed stop)post-rTMS � (successful � failed stop)pre-rTMS]sham.
*p
0.05, **p
0.01, post hoc paired t tests. C, Correlations with behavior: excitatory rTMS. The x-axes are calculated as stated in Figure 3A. D, Correlation with behavior: inhibitory rTMS. The x-axes
are calculated as stated in Figure 3B. E, Effects on rsFC. Significant rsFC changes were observed only in the three rsFCs between pre-SMAana, STRana, and GPiana. F, Effects on partial correlations. In a
subnetwork consisting of pre-SMAana, STRana, and GPiana, two functional interactions (pre-SMAana–STRana and STRana–GPiana) showed significant rTMS effects. G, H, Correlations between partial
correlation changes and behavioral effects. Increases in functional interaction seem to support the behavioral improvement of response inhibition.
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sumption of independence can explain the current negative re-
sults seen in rtIFC and STN activity. In an intact condition, the
two pathways work with some coordination (Neubert et al., 2010;
Swann et al., 2012); however, once an intervention is made in one
of the pathways, the remaining pathway might begin to work
independently.

The current study also adds new observations about the effects
of rTMS on rsFC. Since an early study by Grefkes et al. (2010), a
series of human neuroimaging studies have investigated the in-
fluence of rTMS on resting-state brain activity (Fox et al., 2012,
2013): low-frequency inhibitory rTMS of left dorsolateral pre-
frontal cortex (DLPFC) reduced the activity of default mode net-
work (DMN; van der Werf et al., 2010); excitatory rTMS of
inferior parietal lobule generally decreased rsFC in DMN,
whereas inhibitory rTMS increased rsFC in DMN (Eldaief et al.,
2011); and similar effects of excitatory and inhibitory rTMS on
rsFC between bilateral primary motor areas were also observed
(Watanabe et al., 2014). In contrast, other studies reported that
no significant effect of 5 Hz rTMS of DLFPC was found in rsFC
between the DLPFC and hippocampus (Bilek et al., 2013), and
that the effects of their excitatory theta-burst rTMS were limited
to relatively narrow brain areas (Nettekoven et al., 2014). At a
glance, these reports appear to contain some inconsistency, but
they might simply suggest that rTMS-induced changes in rsFC
vary between different sets of brain regions and brain networks.
In fact, the current rTMS effects on rsFC also highly dependent
on region pairs (Fig. 4A–C). In the 10 rsFCs between the five
ROIs, only 3 rsFCs showed significant rTMS effects; moreover,
the directions of the effects on 1 rsFC (i.e., between STN and
STR) were the opposite of those seen in the other rsFCs. It might
be necessary to assume that rTMS effects on rsFC between a
specific region pair cannot be directly applied to those between
other region pairs.

One of the limitations of the current study is in the relatively
small number of participants. It is difficult to deny the causal
effects of pre-SMA on rtIFC or STN during response inhibition.
In fact, the two regions are anatomically connected with each
other and can have somewhat causal relationships during SST
(Aron et al., 2007). In addition, although its finding is based on
the observations of a single patient, a previous study (Swann et
al., 2012) reported an increase in rtIFC activity after microstimu-
lation of pre-SMA. It will be necessary not only to investigate the
neural effects of the stimulation of pre-SMA with more partici-
pants, but also to examine the influences of rtIFC on pre-SMA.

Another limitation is in the current paradigm of SST. Here, we
neither implemented a choice task in go trials, nor adopted jit-
tered ITIs. As a result, the current settings might have somewhat
allowed the participants to anticipate the onset timing of go trials,
which would have resulted in relatively earlier initiation of go
processes than in other SST experiments with choice tasks in go
trials or jittered ITIs. The effects of this possibly early start of the
go process on SSRT are unclear: it might have extended SSRT or
have lengthened SSD but left SSRT intact. Because the current
findings are based on comparison with the sham condition, the
observed behavioral rTMS effects were robust against this possi-
bility of the extension of SSRT; however, we need to be cautious
in the direct comparison of the current SSRT with that seen in
other studies. In addition, this early initiation of the go process
might have also made it difficult for us to detect rTMS effects on
brain activity in the contrast between successful stop and go trials
(Fig. 2A).

In the current study, we provided empirical evidence that the
causal regulation from pre-SMA to GPi via STR is essential for

successful response inhibition. Furthermore, the current obser-
vations on rtIFC and STN imply that the fronto basal ganglia
network underlying response inhibition might consist of multi-
ple independent pathways.
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