Core structures of a single vortex in A-like and B-like phases of superfluid
3He in uniaxially compressed and stretched aerogels are studied by numerically
solving Ginzburg-Landau equations derived microscopically. It is found that,
although any uniaxial deformation leads to a wider A-like phase with the axial
pairing in the pressure-temperature phase diagram, the vortex core states in
the two phases in aerogel depend highly on the type of deformation. In a
compressed aerogel, the first-order vortex core transition (VCT) previously
seen in the bulk B phase appears at any pressure in the B-like phase while no
strange vortex core is expected in the corresponding A-like phase. By contrast,
in a stretched aerogel, the VCT in the B-like phase is lost while another VCT
is expected to occur between a nonunitary core and a polar one in the A-like
phase. Experimental search for these results is hoped to understand correlation
between superfluid 3He and aerogel structure.Comment: 7 pages, 6 figures Text was changed. Resubmitted versio