3,094 research outputs found

    Writing for Reading

    Get PDF
    For some time concern about the writing ability of students has matched the attention given to their reading development. Teachers of all subjects are urged to require their students to write more, and suggestions for helping students improve their writing abound. At the same time we see additional justification for stressing writing; improvement in writing might well lead to improvement in reading

    A Simply Exponential Upper Bound on the Maximum Number of Stable Matchings

    Full text link
    Stable matching is a classical combinatorial problem that has been the subject of intense theoretical and empirical study since its introduction in 1962 in a seminal paper by Gale and Shapley. In this paper, we provide a new upper bound on f(n)f(n), the maximum number of stable matchings that a stable matching instance with nn men and nn women can have. It has been a long-standing open problem to understand the asymptotic behavior of f(n)f(n) as nn\to\infty, first posed by Donald Knuth in the 1970s. Until now the best lower bound was approximately 2.28n2.28^n, and the best upper bound was 2nlognO(n)2^{n\log n- O(n)}. In this paper, we show that for all nn, f(n)cnf(n) \leq c^n for some universal constant cc. This matches the lower bound up to the base of the exponent. Our proof is based on a reduction to counting the number of downsets of a family of posets that we call "mixing". The latter might be of independent interest

    Approaching Utopia: Strong Truthfulness and Externality-Resistant Mechanisms

    Full text link
    We introduce and study strongly truthful mechanisms and their applications. We use strongly truthful mechanisms as a tool for implementation in undominated strategies for several problems,including the design of externality resistant auctions and a variant of multi-dimensional scheduling

    Automated design of minimum drag light aircraft fuselages and nacelles

    Get PDF
    The constrained minimization algorithm of Vanderplaats is applied to the problem of designing minimum drag faired bodies such as fuselages and nacelles. Body drag is computed by a variation of the Hess-Smith code. This variation includes a boundary layer computation. The encased payload provides arbitrary geometric constraints, specified a priori by the designer, below which the fairing cannot shrink. The optimization may include engine cooling air flows entering and exhausting through specific port locations on the body

    Stability of Service under Time-of-Use Pricing

    Full text link
    We consider "time-of-use" pricing as a technique for matching supply and demand of temporal resources with the goal of maximizing social welfare. Relevant examples include energy, computing resources on a cloud computing platform, and charging stations for electric vehicles, among many others. A client/job in this setting has a window of time during which he needs service, and a particular value for obtaining it. We assume a stochastic model for demand, where each job materializes with some probability via an independent Bernoulli trial. Given a per-time-unit pricing of resources, any realized job will first try to get served by the cheapest available resource in its window and, failing that, will try to find service at the next cheapest available resource, and so on. Thus, the natural stochastic fluctuations in demand have the potential to lead to cascading overload events. Our main result shows that setting prices so as to optimally handle the {\em expected} demand works well: with high probability, when the actual demand is instantiated, the system is stable and the expected value of the jobs served is very close to that of the optimal offline algorithm.Comment: To appear in STOC'1

    Early appraisal of the fixation probability in directed networks

    Get PDF
    In evolutionary dynamics, the probability that a mutation spreads through the whole population, having arisen in a single individual, is known as the fixation probability. In general, it is not possible to find the fixation probability analytically given the mutant's fitness and the topological constraints that govern the spread of the mutation, so one resorts to simulations instead. Depending on the topology in use, a great number of evolutionary steps may be needed in each of the simulation events, particularly in those that end with the population containing mutants only. We introduce two techniques to accelerate the determination of the fixation probability. The first one skips all evolutionary steps in which the number of mutants does not change and thereby reduces the number of steps per simulation event considerably. This technique is computationally advantageous for some of the so-called layered networks. The second technique, which is not restricted to layered networks, consists of aborting any simulation event in which the number of mutants has grown beyond a certain threshold value, and counting that event as having led to a total spread of the mutation. For large populations, and regardless of the network's topology, we demonstrate, both analytically and by means of simulations, that using a threshold of about 100 mutants leads to an estimate of the fixation probability that deviates in no significant way from that obtained from the full-fledged simulations. We have observed speedups of two orders of magnitude for layered networks with 10000 nodes

    A Solvable Sequence Evolution Model and Genomic Correlations

    Full text link
    We study a minimal model for genome evolution whose elementary processes are single site mutation, duplication and deletion of sequence regions and insertion of random segments. These processes are found to generate long-range correlations in the composition of letters as long as the sequence length is growing, i.e., the combined rates of duplications and insertions are higher than the deletion rate. For constant sequence length, on the other hand, all initial correlations decay exponentially. These results are obtained analytically and by simulations. They are compared with the long-range correlations observed in genomic DNA, and the implications for genome evolution are discussed.Comment: 4 pages, 4 figure

    Exit times in non-Markovian drifting continuous-time random walk processes

    Get PDF
    By appealing to renewal theory we determine the equations that the mean exit time of a continuous-time random walk with drift satisfies both when the present coincides with a jump instant or when it does not. Particular attention is paid to the corrections ensuing from the non-Markovian nature of the process. We show that when drift and jumps have the same sign the relevant integral equations can be solved in closed form. The case when holding times have the classical Erlang distribution is considered in detail.Comment: 9 pages, 3 color plots, two-column revtex 4; new Appendix and references adde
    corecore