research

A Simply Exponential Upper Bound on the Maximum Number of Stable Matchings

Abstract

Stable matching is a classical combinatorial problem that has been the subject of intense theoretical and empirical study since its introduction in 1962 in a seminal paper by Gale and Shapley. In this paper, we provide a new upper bound on f(n)f(n), the maximum number of stable matchings that a stable matching instance with nn men and nn women can have. It has been a long-standing open problem to understand the asymptotic behavior of f(n)f(n) as nn\to\infty, first posed by Donald Knuth in the 1970s. Until now the best lower bound was approximately 2.28n2.28^n, and the best upper bound was 2nlognO(n)2^{n\log n- O(n)}. In this paper, we show that for all nn, f(n)cnf(n) \leq c^n for some universal constant cc. This matches the lower bound up to the base of the exponent. Our proof is based on a reduction to counting the number of downsets of a family of posets that we call "mixing". The latter might be of independent interest

    Similar works

    Full text

    thumbnail-image

    Available Versions