2,704 research outputs found

    Self-sterilization of bodies during outer planet entry

    Get PDF
    A body encountering the atmosphere of an outer planet is subjected to heat loads which could result in high temperature conditions that render terrestrial organisms on or within the body nonviable. To determine whether an irregularly shaped entering body, consisting of several different materials, would be sterilized during inadvertent entry at high velocity, the thermal response of a typical outer planet spacecraft instrument was studied. The results indicate that the Teflon insulated cable and electronic circuit boards may not experience sterilizing temperatures during a Jupiter, Saturn, or Titan entry. Another conclusion of the study is that small plastic particles entering Saturn from outer space have wider survival corridors than do those at Jupiter

    Performance of silicon solar cell assemblies

    Get PDF
    Solar cell assembly current-voltage characteristics, thermal-optical properties, and power performance were determined. Solar cell cover glass thermal radiation, optical properties, confidence limits, and temperature intensity effects on maximum power were discussed

    Surface losses and self-pumping effects in a long Josephson junction - a semi-analytical approach

    Full text link
    The flux-flow dynamics in a long Josephson junction is studied both analytically and numerically. A realistic model of the junction is considered by taking into account a nonuniform current distribution, surface losses and self-pumping effects. An approximate analytical solution of the modified sine-Gordon equation is derived in the form of a unidirectional dense fluxon train accompanied by two oppositely directed plasma waves. Next, some macroscopic time-averaged quantities are calculated making possible to evaluate the current-voltage characteristic of the junction. The results obtained by the present method are compared with direct numerical simulations both for the current-voltage characteristics and for the loss factor modulated spatially due to the self-pumping. The comparison shows very good agreement for typical junction parameters but indicates also some limitations of the method.Comment: 7 pages, 5 figure

    Gas-liquid mass transfer : a comparison of down-and up-pumping axial flow impellers with radial impellers

    Get PDF
    The performance of a down- and up-pumping pitched blade turbine and A315 for gas-liquid dispersion and mass transfer was evaluated and then compared with that of Rushton and Scaba turbines in a small laboratory scale vessel. The results show that when the axial flow impellers are operated in the up-pumping mode, the overall performance is largely improved compared with the down-pumping configuration. Compared with the radial turbines, the up-pumping A315 has a high gas handling capacity, equivalent to the Scaba turbine and is economically much more efficient in terms of mass transfer than both turbines. On the other hand, the uppumping pitched blade turbine is not as well adapted to such applications. Finally, the axial flow impellers in the down-pumping mode have the lowest performance of all the impellers studied, although the A315 is preferred of the pitched blade turbine

    PCV20 COST EFFECTIVENESS OF ANTIHYPERTENSIVE MONO-THERAPYWITH PERINDOPRIL OR ENALAPRIL IN ELDERLY PATIENTS FROM THE THIRD PARTY PAYER PERSPECTIVE

    Get PDF

    Phonon driven spin distribution due to the spin-Seebeck effect

    Full text link
    Here we report on measurements of the spin-Seebeck effect of GaMnAs over an extended temperature range alongside the thermal conductivity, specific heat, magnetization, and thermoelectric power. The amplitude of the spin-Seebeck effect in GaMnAs scales with the thermal conductivity of the GaAs substrate and the phonon-drag contribution to the thermoelectric power of the GaMnAs, demonstrating that phonons drive the spin redistribution. A phenomenological model involving phonon-magnon drag explains the spatial and temperature dependence of the measured spin distribution.Comment: 12 pages, 3 figure

    Some Properties of Distal Actions on Locally Compact Groups

    Full text link
    We consider the actions of (semi)groups on a locally compact group by automorphisms. We show the equivalence of distality and pointwise distality for the actions of a certain class of groups. We also show that a compactly generated locally compact group of polynomial growth has a compact normal subgroup KK such that G/KG/K is distal and the conjugacy action of GG on KK is ergodic; moreover, if GG itself is (pointwise) distal then GG is Lie projective. We prove a decomposition theorem for contraction groups of an automorphism under certain conditions. We give a necessary and sufficient condition for distality of an automorphism in terms of its contraction group. We compare classes of (pointwise) distal groups and groups whose closed subgroups are unimodular. In particular, we study relations between distality, unimodularity and contraction subgroups.Comment: 27 pages, main results are revised and improved, some preliminary results are removed and some new results are added, some proofs are revised and some are made shorte

    Modal and non-modal stabilities of flow around a stack of plates

    Get PDF
    Modal and non-modal stabilities of flow around a stack of flat plates are investigated by means of asymptotic stability and transient growth analyses respectively. It is observed that over the parameters considered, both the base flow and the stabilities vary as a function of ReW2/(W−1)2, i.e. the product of the Reynolds number and the square of the expansion ratio of the stack. The most unstable modes are found to be located downstream of the recirculation bubble while the global optimal initial perturbations (resulting in maximum energy growth over the entire domain) and the weighted optimal initial perturbations (resulting in maximum energy growth in the close downstream region of the stack) concentrate around the stack end owing to the Orr mechanism. In direct numerical simulations (DNS) of the base flow initially perturbed by the modes, it is noticed that the weighted optimal initial perturbation induces periodic vortex shedding downstream of the stack much faster than the most unstable mode. This observation suggests that the widely reported vortex shedding in flow around a stack of plates, e.g. in thermoacoustic devices, is associated with perturbations around the stack end

    Appropriately differentiated ARPE-19 cells regain phenotype and gene expression profiles similar to those of native RPE cells.

    Get PDF
    PurposeThe RPE cell line ARPE-19 provides a dependable and widely used alternative to native RPE. However, replication of the native RPE phenotype becomes more difficult because these cells lose their specialized phenotype after multiple passages. Compounding this problem is the widespread use of ARPE-19 cells in an undifferentiated state to attempt to model RPE functions. We wished to determine whether suitable culture conditions and differentiation could restore the RPE-appropriate expression of genes and proteins to ARPE-19, along with a functional and morphological phenotype resembling native RPE. We compared the transcriptome of ARPE-19 cells kept in long-term culture with those of primary and other human RPE cells to assess the former's inherent plasticity relative to the latter.MethodsARPE-19 cells at passages 9 to 12 grown in DMEM containing high glucose and pyruvate with 1% fetal bovine serum were differentiated for up to 4 months. Immunocytochemistry was performed on ARPE-19 cells grown on filters. Total RNA extracted from ARPE-19 cells cultured for either 4 days or 4 months was used for RNA sequencing (RNA-Seq) analysis using a 2 × 50 bp paired end protocol. The RNA-Seq data were analyzed to identify the affected pathways and recognize shared ontological classification among differentially expressed genes. RPE-specific mRNAs and miRNAs were assessed with quantitative real-time (RT)-PCR, and proteins with western blotting.ResultsARPE-19 cells grown for 4 months developed the classic native RPE phenotype with heavy pigmentation. RPE-expressed genes, including RPE65, RDH5, and RDH10, as well as miR-204/211, were greatly increased in the ARPE-19 cells maintained at confluence for 4 months. The RNA-Seq analysis provided a comprehensive view of the relative abundance and differential expression of the genes in the differentiated ARPE-19 cells. Of the 16,757 genes with detectable signals, nearly 1,681 genes were upregulated, and 1,629 genes were downregulated with a fold change of 2.5 or more differences between 4 months and 4 days of culture. Gene Ontology analysis showed that the upregulated genes were associated with visual cycle, phagocytosis, pigment synthesis, cell differentiation, and RPE-related transcription factors. The majority of the downregulated genes play a role in cell cycle and proliferation.ConclusionsThe ARPE-19 cells cultured for 4 months developed a phenotype characteristic of native RPE and expressed proteins, mRNAs, and miRNAs characteristic of the RPE. Comparison of the ARPE-19 RNA-Seq data set with that of primary human fetal RPE, embryonic stem cell-derived RPE, and native RPE revealed an important overall similar expression ratio among all the models and native tissue. However, none of the cultured models reached the absolute values in the native tissue. The results of this study demonstrate that low-passage ARPE-19 cells can express genes specific to native human RPE cells when appropriately cultured and differentiated
    • …
    corecore