6,787 research outputs found

    Photoionization models of the CALIFA HII regions. I. Hybrid models

    Get PDF
    Photoionization models of HII regions require as input a description of the ionizing SED and of the gas distribution, in terms of ionization parameter U and chemical abundances (e.g. O/H and N/O). A strong degeneracy exists between the hardness of the SED and U, which in turn leads to high uncertainties in the determination of the other parameters, including abundances. One way to resolve the degeneracy is to fix one of the parameters using additional information. For each of the ~ 20000 sources of the CALIFA HII regions catalog, a grid of photoionization models is computed assuming the ionizing SED being described by the underlying stellar population obtained from spectral synthesis modeling. The ionizing SED is then defined as the sum of various stellar bursts of different ages and metallicities. This solves the degeneracy between the shape of the ionizing SED and U. The nebular metallicity (associated to O/H) is defined using the classical strong line method O3N2 (which gives to our models the status of "hybrids"). The remaining free parameters are the abundance ratio N/O and the ionization parameter U, which are determined by looking for the model fitting [NII]/Ha and [OIII]/Hb. The models are also selected to fit [OII]/Hb. This process leads to a set of ~ 3200 models that reproduce simultaneously the three observations. We find that the regions associated to young stellar bursts suffer leaking of the ionizing photons, the proportion of escaping photons having a median of 80\%. The set of photoionization models satisfactorily reproduces the electron temperature derived from the [OIII]4363/5007 line ratio. We determine new relations between the ionization parameter U and the [OII]/[OIII] or [SII]/[SIII] line ratios. New relations between N/O and O/H and between U and O/H are also determined. All the models are publicly available on the 3MdB database.Comment: Accepted for publication in A&

    Resolving galaxies in time and space: II: Uncertainties in the spectral synthesis of datacubes

    Full text link
    In a companion paper we have presented many products derived from the application of the spectral synthesis code STARLIGHT to datacubes from the CALIFA survey, including 2D maps of stellar population properties and 1D averages in the temporal and spatial dimensions. Here we evaluate the uncertainties in these products. Uncertainties due to noise and spectral shape calibration errors and to the synthesis method are investigated by means of a suite of simulations based on 1638 CALIFA spectra for NGC 2916, with perturbations amplitudes gauged in terms of the expected errors. A separate study was conducted to assess uncertainties related to the choice of evolutionary synthesis models. We compare results obtained with the Bruzual & Charlot models, a preliminary update of them, and a combination of spectra derived from the Granada and MILES models. About 100k CALIFA spectra are used in this comparison. Noise and shape-related errors at the level expected for CALIFA propagate to 0.10-0.15 dex uncertainties in stellar masses, mean ages and metallicities. Uncertainties in A_V increase from 0.06 mag in the case of random noise to 0.16 mag for shape errors. Higher order products such as SFHs are more uncertain, but still relatively stable. Due to the large number statistics of datacubes, spatial averaging reduces uncertainties while preserving information on the history and structure of stellar populations. Radial profiles of global properties, as well as SFHs averaged over different regions are much more stable than for individual spaxels. Uncertainties related to the choice of base models are larger than those associated with data and method. Differences in mean age, mass and metallicity are ~ 0.15 to 0.25 dex, and 0.1 mag in A_V. Spectral residuals are ~ 1% on average, but with systematic features of up to 4%. The origin of these features is discussed. (Abridged)Comment: A&A, accepte

    The nature of LINER galaxies: Ubiquitous hot old stars and rare accreting black holes

    Get PDF
    Galaxies, which often contain ionised gas, sometimes also exhibit a so-called low-ionisation nuclear emission line region (LINER). For 30 years this was attributed to a central mass-accreting supermassive black hole (AGN) of low luminosity, making LINER galaxies the largest AGN-sub-population, dominating in numbers over higher luminosity Seyfert galaxies and quasars. This, however, poses a serious problem. While the inferred energy balance is plausible, many LINERs clearly do not contain any other independent signatures of an AGN. Using integral field spectroscopic data from the CALIFA survey, we aim at comparing the observed radial surface brightness profiles with what is expected from illumination by an AGN. Essential for this analysis is a proper extraction of emission-lines, especially weak lines such as the Balmer Hb line which is superposed on an absorption trough. To accomplish this, we use the GANDALF code which simultaneously fits the underlying stellar continuum and emission lines. We show for 48 galaxies with LINER-like emission, that the radial emission-line surface brightness profiles are inconsistent with ionisation by a central point-source and hence cannot be due to an AGN alone. The most probable explanation for the excess LINER-like emission is ionisation by evolved stars during the short but very hot and energetic phase known as post-AGB. This leads us to an entirely new interpretation. Post-AGB stars are ubiquitous and their ionising effect should be potentially observable in every galaxy with gas present and stars older than ~1 Gyr, unless a stronger radiation field from young hot stars or an AGN outshines them. This means that galaxies with LINER-like emission are in fact not a class defined by a property, but rather by the absence of a property. It also explains why LINER emission is observed mostly in massive galaxies with old stars and little star formation.Comment: 8 pages, 7 figure

    The dependence of oxygen and nitrogen abundances on stellar mass from the CALIFA survey

    Full text link
    We analysed the optical spectra of HII regions extracted from a sample of 350 galaxies of the CALIFA survey. We calculated total O/H abundances and, for the first time, N/O ratios using the semi-empirical routine HII-CHI-mistry, which, according to P\'erez-Montero (2014), is consistent with the direct method and reduces the uncertainty in the O/H derivation using [NII] lines owing to the dispersion in the O/H-N/O relation. Then we performed linear fittings to the abundances as a function of the de-projected galactocentric distances. The analysis of the radial distribution both for O/H and N/O in the non-interacting galaxies reveals that both average slopes are negative, but a non-negligible fraction of objects have a flat or even a positive gradient (at least 10\% for O/H and 4\% for N/O). The slopes normalised to the effective radius appear to have a slight dependence on the total stellar mass and the morphological type, as late low-mass objects tend to have flatter slopes. No clear relation is found, however, to explain the presence of inverted gradients in this sample, and there is no dependence between the average slopes and the presence of a bar. The relation between the resulting O/H and N/O linear fittings at the effective radius is much tighter (correlation coefficient ρs\rho_s = 0.80) than between O/H and N/O slopes (ρs\rho_s = 0.39) or for O/H and N/O in the individual \hii\ regions (ρs\rho_s = 0.37). These O/H and N/O values at the effective radius also correlate very tightly (less than 0.03 dex of dispersion) with total luminosity and stellar mass. The relation with other integrated properties, such as star formation rate, colour, or morphology, can be understood only in light of the found relation with mass.Comment: Accepted for publication in A&A. 20 pages, 19 figure

    Central star formation and metallicity in CALIFA interacting galaxies

    Full text link
    We use optical integral-field spectroscopic (IFS) data from 103 nearby galaxies at different stages of the merging event, from close pairs to merger remnants provided by the CALIFA survey, to study the impact of the interaction in the specific star formation and oxygen abundance on different galactic scales. To disentangle the effect of the interaction and merger from internal processes, we compared our results with a control sample of 80 non-interacting galaxies. We confirm the moderate enhancement (2-3 times) of specific star formation for interacting galaxies in central regions as reported by previous studies; however, the specific star formation is comparable when observed in extended regions. We find that control and interacting star-forming galaxies have similar oxygen abundances in their central regions, when normalized to their stellar masses. Oxygen abundances of these interacting galaxies seem to decrease compared to the control objects at the large aperture sizes measured in effective radius. Although the enhancement in central star formation and lower metallicities for interacting galaxies have been attributed to tidally induced inflows, our results suggest that other processes such as stellar feedback can contribute to the metal enrichment in interacting galaxies.Comment: 9 pages, 9 figures. Accepted for publication in Astronomy & Astrophysic

    Insights on the stellar mass-metallicity relation from the CALIFA survey

    Get PDF
    We use spatially and temporally resolved maps of stellar population properties of 300 galaxies from the CALIFA integral field survey to investigate how the stellar metallicity (Z*) relates to the total stellar mass (M*) and the local mass surface density (μ\mu*) in both spheroidal and disk dominated galaxies. The galaxies are shown to follow a clear stellar mass-metallicity relation (MZR) over the whole 109^9 to 1012^{12} M_{\odot} range. This relation is steeper than the one derived from nebular abundances, which is similar to the flatter stellar MZR derived when we consider only young stars. We also find a strong relation between the local values of μ\mu* and Z* (the μ\muZR), betraying the influence of local factors in determining Z*. This shows that both local (μ\mu*-driven) and global (M*-driven) processes are important in determining the metallicity in galaxies. We find that the overall balance between local and global effects varies with the location within a galaxy. In disks, μ\mu* regulates Z*, producing a strong μ\muZR whose amplitude is modulated by M*. In spheroids it is M* who dominates the physics of star formation and chemical enrichment, with μ\mu* playing a minor, secondary role. These findings agree with our previous analysis of the star formation histories of CALIFA galaxies, which showed that mean stellar ages are mainly governed by surface density in galaxy disks and by total mass in spheroids.Comment: 6 pages, 3 figures, accepted for publication in ApJ

    Aperture effects on the oxygen abundance determinations from CALIFA data

    Full text link
    This paper aims at providing aperture corrections for emission lines in a sample of spiral galaxies from the Calar Alto Legacy Integral Field Area Survey (CALIFA) database. In particular, we explore the behavior of the log([OIII]5007/Hbeta)/([NII]6583/Halpha) (O3N2) and log[NII]6583/Halpha (N2) flux ratios since they are closely connected to different empirical calibrations of the oxygen abundances in star forming galaxies. We compute median growth curves of Halpha, Halpha/Hbeta, O3N2 and N2 up to 2.5R_50 and 1.5 disk R_eff. The growth curves simulate the effect of observing galaxies through apertures of varying radii. The median growth curve of the Halpha/Hbeta ratio monotonically decreases from the center towards larger radii, showing for small apertures a maximum value of ~10% larger than the integrated one. The median growth curve of N2 shows a similar behavior, decreasing from the center towards larger radii. No strong dependence is seen with the inclination, morphological type and stellar mass for these growth curves. Finally, the median growth curve of O3N2 increases monotonically with radius. However, at small radii it shows systematically higher values for galaxies of earlier morphological types and for high stellar mass galaxies. Applying our aperture corrections to a sample of galaxies from the SDSS survey at 0.02<=z<=0.3 shows that the average difference between fiber-based and aperture corrected oxygen abundances, for different galaxy stellar mass and redshift ranges, reaches typically to ~11%, depending on the abundance calibration used. This average difference is found to be systematically biased, though still within the typical uncertainties of oxygen abundances derived from empirical calibrations. Caution must be exercised when using observations of galaxies for small radii (e.g. below 0.5R_eff) given the high dispersion shown around the median growth curves.Comment: Accepted for publication in Ap

    From Teamchef Arminius to Hermann Junior: glocalised discourse about a national foundation myth

    Get PDF
    If for much of the nineteenth and twentieth centuries, the ‘Battle of the Teutoburg Forest’, fought in 9 CE between Roman armies and Germanic tribes, was predominantly a reference point for nationalist and chauvinist discourses in Germany, the first decade of the twenty-first century has seen attempts to link public remembrance with local/regional identities on the one hand and international/intercultural contact on the other. In the run up to and during the ‘anniversary year’ of 2009, German media, sports institutions and various other official institutions articulating tourist, economic and political interests attempted to create a new ‘glocalised’ version of the public memory of the Teutoburg battle. Combining methods of Cognitive Linguistics and Critical Discourse Analysis, the paper analyses the narrative and argumentative topoi employed in this re-orientation of public memory, with a special emphasis on hybrid, post-national identity-construction. Das zweitausendjährige Gedenkjahr der „Schlacht im Teutoburger Wald“ im Jahr 2009 bot eine günstige Gelegenheit, die bis in die zweite Hälfte des 20. Jahrhunderts dominante Tradition nationalistisch–chauvinistischer Deutungen des Sieges von germanischen Stämmen über drei römische Legionen zu korrigieren und zu überwinden. Der Aufsatz analysiert mit Hilfe diskurslinguistischer Methoden die Anstrengungen regionaler Institutionen und Medien, die nationale Vereinnahmung des historischen Gedenkens kritisch zu thematisieren sowie neue, zum eine lokal situierte, zum andern international orientierte Identifikationsangebote anzubieten. Die Analyse zeigt, dass solche „de-nationalisierten“ Identifikationsangebote zwar teilweise auch früher verwendet wurden, aber heutzutage rekontextualisiert und auf innovative Weise in den Vordergrund gestellt werden

    Stellar Population gradients in galaxy discs from the CALIFA survey

    Get PDF
    While studies of gas-phase metallicity gradients in disc galaxies are common, very little has been done in the acquisition of stellar abundance gradients in the same regions. We present here a comparative study of the stellar metallicity and age distributions in a sample of 62 nearly face-on, spiral galaxies with and without bars, using data from the CALIFA survey. We measure the slopes of the gradients and study their relation with other properties of the galaxies. We find that the mean stellar age and metallicity gradients in the disc are shallow and negative. Furthermore, when normalized to the effective radius of the disc, the slope of the stellar population gradients does not correlate with the mass or with the morphological type of the galaxies. Contrary to this, the values of both age and metallicity at \sim2.5 scale-lengths correlate with the central velocity dispersion in a similar manner to the central values of the bulges, although bulges show, on average, older ages and higher metallicities than the discs. One of the goals of the present paper is to test the theoretical prediction that non-linear coupling between the bar and the spiral arms is an efficient mechanism for producing radial migrations across significant distances within discs. The process of radial migration should flatten the stellar metallicity gradient with time and, therefore, we would expect flatter stellar metallicity gradients in barred galaxies. However, we do not find any difference in the metallicity or age gradients in galaxies with without bars. We discuss possible scenarios that can lead to this absence of difference.Comment: 24 pages, 17 figures, accepted for publication in A&
    corecore