445 research outputs found

    Using Genetic Programming to Investigate a Novel Model of Resting Energy Expenditure for Bariatric Surgery Patients

    Get PDF
    Traditionally, models developed to estimate resting energy expenditure (REE) in the bariatric population have been limited to linear modelling based on data from `normal' or `overweight' individuals - not `obese'. This type of modelling can be restrictive and yield functions which poorly estimate this important physiological outcome.Linear and nonlinear models of REE for individuals after bariatric surgery are developed with linear regression and symbolic regression via genetic programming. Features not traditionally used in REE modelling were also incorporated and analyzed and genetic programming's intrinsic feature selection was used as a measure of feature importance.A collection of effective new linear and nonlinear models were generated. The linear models generated outperformed the nonlinear on testing data, although the nonlinear models fit the training data better. Ultimately, the newly developed linear models showed an improvement over existing models and the feature importance analysis suggested that the typically used features (age, weight, and height) were the most important

    Inhibition of a plant virus infection by analogs of melittin.

    Full text link

    The Mathematics of a Successful Deconvolution: A Quantitative Assessment of Mixture-Based Combinatorial Libraries Screened Against Two Formylpeptide Receptors

    Get PDF
    In the past 20 years, synthetic combinatorial methods have fundamentally advanced the ability to synthesize and screen large numbers of compounds for drug discovery and basic research. Mixture-based libraries and positional scanning deconvolution combine two approaches for the rapid identification of specific scaffolds and active ligands. Here we present a quantitative assessment of the screening of 32 positional scanning libraries in the identification of highly specific and selective ligands for two formylpeptide receptors. We also compare and contrast two mixture-based library approaches using a mathematical model to facilitate the selection of active scaffolds and libraries to be pursued for further evaluation. The flexibility demonstrated in the differently formatted mixture-based libraries allows for their screening in a wide range of assays

    Increased diversity of libraries from libraries: chemoinformatic analysis of bis-diazacyclic libraries

    Get PDF
    Combinatorial libraries continue to play a key role in drug discovery. To increase structural diversity, several experimental methods have been developed. However, limited efforts have been performed so far to quantify the diversity of the broadly used diversity-oriented synthetic (DOS) libraries. Herein we report a comprehensive characterization of 15 bis-diazacyclic combinatorial libraries obtained through libraries from libraries, which is a DOS approach. Using MACCS keys, radial and different pharmacophoric fingerprints as well as six molecular properties, it was demonstrated the increased structural and property diversity of the libraries from libraries over the individual libraries. Comparison of the libraries to existing drugs, NCI Diversity and the Molecular Libraries Small Molecule Repository revealed the structural uniqueness of the combinatorial libraries (mean similarity < 0.5 for any fingerprint representation). In particular, bis-cyclic thiourea libraries were the most structurally dissimilar to drugs retaining drug-like character in property space. This study represents the first comprehensive quantification of the diversity of libraries from libraries providing a solid quantitative approach to compare and contrast the diversity of DOS libraries with existing drugs or any other compound collection

    Identification of Tetrapeptides from a Mixture Based Positional Scanning Library That Can Restore nM Full Agonist Function of the L106P, I69T, I102S, A219V, C271Y, and C271R Human Melanocortin-4 Polymorphic Receptors (hMC4Rs)

    Get PDF
    Human obesity has been linked to genetic factors and single nucleotide polymorphisms (SNPs). Melanocortin-4 receptor (MC4R) SNPs have been associated with up to 6% frequency in morbidly obese children and adults. A potential therapy for individuals possessing such genetic modifications is the identification of molecules that can restore proper receptor signaling and function. These compounds could serve as personalized medications improving quality of life issues as well as alleviating diseases symptoms associated with obesity including type 2 diabetes. Several hMC4 SNP receptors have been pharmacologically characterized in vitro to have a decreased, or a lack of response, to endogenous agonists such as Ξ±-, Ξ²-, and Ξ³2-melanocyte stimulating hormones (MSH) and adrenocorticotropin hormone (ACTH). Herein we report the use of a mixture based positional scanning combinatorial tetrapeptide library to discover molecules with nM full agonist potency and efficacy to the L106P, I69T, I102S, A219V, C271Y, and C271R hMC4Rs. The most potent compounds at all these hMC4R SNPs include Ac-His-(pI)DPhe-Tic-(pNO2)DPhe-NH2, Ac-His-(pCl)DPhe-Tic-(pNO2)DPhe-NH2, Ac-His-(pCl)DPhe-Arg-(pI)Phe-NH2, and Ac-Arg-(pCl)DPhe-Tic-(pNO2)DPhe-NH2, revealing new ligand pharmacophore models for melanocortin receptor drug design strategies

    Corrigendum to "A Study Of Human T-Cell Lines Generated From Multiple Sclerosis Patients And Controls By Stimulation With Peptides Of Myelin Basic Protein" (J. Neuroimmunol. 70, 65-74)

    Get PDF
    The amino acid sequences of the 5D and 5E synthetic peptides used in the above study inadvertently contained two lysine K residues (MYKKDSH) instead of the one K residue (MYKDSH) present in the natural sequences of the 21.5 and 20.2 kDa isoforms of human myelin basic protein. Thus, the sequences published in Table 1 correctly describe the peptides that were used, but peptides 5D and 5E differ from native myelin basic protein sequences by the insertion of an additional lysine residue. This extra lysine residue in peptides 5D and 5E should be considered when interpreting the proliferative and cytotoxic responses to these two peptides. However, it has no impact on the responses to any of the other peptides including all those representing the 18.5 kDa isoform or on the overall conclusions of the paper. The authors apologise for any confusion caused

    Mechanism of Protection Induced by Group A Streptococcus Vaccine Candidate J8-DT: Contribution of B and T-Cells Towards Protection

    Get PDF
    Vaccination with J8-DT, a leading GAS vaccine candidate, results in protective immunity in mice. Analysis of immunologic correlates of protection indicated a role of J8-specific antibodies that were induced post-immunization. In the present study, several independent experimental approaches were employed to investigate the protective immunological mechanisms involved in J8-DT-mediated immunity. These approaches included the passive transfer of mouse or rabbit immune serum/antibodies in addition to selective depletion of T-cell subsets prior to bacterial challenge. Passive transfer of J8-DT antiserum/antibodies from mice and rabbits conferred significant resistance against challenge to mice. To exclude the possibility of involvement of other host immune factors, the studies were repeated in SCID mice, which highlighted the need for an ongoing immune response for long-lived protection. Depletion of CD4+ and CD8+ T-cell subsets confirmed that an active de novo immune response, involving CD4+ T-helper cells, is required for continued synthesis of antibodies resulting in protection against GAS infection. Taken together these results indicate an involvement of CD4+ T-cells in J8-DT-mediated protection possibly via an ability to maintain antibody levels. These results have considerable relevance to the development of a broad spectrum passive immunotherapy for GAS disease

    Photosensitizer Drug Delivery via an Optical Fiber

    Get PDF
    : An optical fiber has been developed with a maneuverable miniprobe tip that sparges O2 gas and photodetaches pheophorbide (sensitizer) molecules. Singlet oxygen is produced at the probe tip surface which reacts with an alkene spacer group releasing sensitizer upon fragmentation of a dioxetane intermediate. Optimal sensitizer photorelease occurred when the probe tip was loaded with 60 nmol sensitizer, where crowding of the pheophorbide molecules and self-quenching were kept to a minimum. The fiber optic tip delivered pheophorbide molecules and singlet oxygen to discrete locations. The 60 nmol sensitizer was delivered into petrolatum; however, sensitizer release was less efficient in toluene-d8 (3.6 nmol) where most had remained adsorbed on the probe tip, even after the covalent alkene spacer bond had been broken. The results open the door to a new area of fiber optic-guided sensitizer delivery for the potential photodynamic therapy of hypoxic structures requiring cytotoxic control
    • …
    corecore