370 research outputs found
Dependence of geosynchrotron radio emission on the energy and depth of maximum of cosmic ray showers
Based on CORSIKA and REAS2 simulations, we investigate the dependence of
geosynchrotron radio emission from extensive air showers on the energy of the
primary cosmic ray and the depth of the shower maximum. It is found that at a
characteristic lateral distance, the amplitude of the bandpass-filtered radio
signal is directly proportional to the energy deposited in the atmosphere by
the electromagnetic cascade, with an RMS uncertainty due to shower-to-shower
fluctuations of less than 3%. In addition, the ratio of this radio amplitude
and that at a larger lateral distance is directly related to the atmospheric
depth of the shower maximum, with an RMS uncertainty of ~15-20 g cm-2. By
measuring these quantities, geosynchrotron radio emission from cosmic ray air
showers can be used to infer the energy of the primary particle and the depth
of the air shower maximum on a shower-to-shower basis.Comment: version accepted by Astroparticle Physics; slightly changed title and
wording; one additional figur
An air shower array for LOFAR: LORA
LOFAR is a new form of radio telescope which can detect radio emission from
air showers induced by very high-energy cosmic rays. It can also look for radio
emission from particle cascades on the Moon induced by ultra high-energy cosmic
rays or neutrinos. To complement the radio detection, we are setting up a small
particle detector array LORA (LOfar Radboud Air shower array) within an area of
m diameter in the LOFAR core. It will help in triggering and
confirming the radio detection of air showers with the LOFAR antennas. In this
paper, we present a short overview about LORA and discuss its current status.Comment: 10 pages (using article.cls), 6 figures, accepted for the proceedings
of 22nd European Cosmic Ray Symposium, 3-6 August 2010, Finlan
A deep campaign to characterize the synchronous radio/X-ray mode switching of PSR B0943+10
We report on simultaneous X-ray and radio observations of the mode-switching
pulsar PSR B0943+10 obtained with the XMM-Newton satellite and the LOFAR, LWA
and Arecibo radio telescopes in November 2014. We confirm the synchronous
X-ray/radio switching between a radio-bright (B) and a radio-quiet (Q) mode, in
which the X-ray flux is a factor ~2.4 higher than in the B-mode. We discovered
X-ray pulsations, with pulsed fraction of 38+/-5% (0.5-2 keV), during the
B-mode, and confirm their presence in Q-mode, where the pulsed fraction
increases with energy from ~20% up to ~65% at 2 keV. We found marginal evidence
for an increase in the X-ray pulsed fraction during B-mode on a timescale of
hours. The Q-mode X-ray spectrum requires a fit with a two-component model
(either a power-law plus blackbody or the sum of two blackbodies), while the
B-mode spectrum is well fit by a single blackbody (a single power-law is
rejected). With a maximum likelihood analysis, we found that in Q-mode the
pulsed emission has a thermal blackbody spectrum with temperature ~3.4x10^6 K
and the unpulsed emission is a power-law with photon index ~2.5, while during
B-mode both the pulsed and unpulsed emission can be fit by either a blackbody
or a power law with similar values of temperature and photon index. A Chandra
image shows no evidence for diffuse X-ray emission. These results support a
scenario in which both unpulsed non-thermal emission, likely of magnetospheric
origin, and pulsed thermal emission from a small polar cap (~1500 m^2) with a
strong non-dipolar magnetic field (~10^{14} G), are present during both radio
modes and vary in intensity in a correlated way. This is broadly consistent
with the predictions of the partially screened gap model and does not
necessarily imply global magnetospheric rearrangements to explain the mode
switching.Comment: To be published on The Astrophysical Journa
The nature of the low-frequency emission of M51: First observations of a nearby galaxy with LOFAR
The grand-design spiral galaxy M51 was observed with the LOFAR High Frequency
Antennas (HBA) and imaged in total intensity and polarisation. This observation
covered the frequencies between 115 MHz and 175 MHz. We produced an image of
total emission of M51 at the mean frequency of 151 MHz with 20 arcsec
resolution and 0.3 mJy rms noise, which is the most sensitive image of a galaxy
at frequencies below 300 MHz so far. The integrated spectrum of total radio
emission is described well by a power law, while flat spectral indices in the
central region indicate thermal absorption. We observe that the disk extends
out to 16 kpc and see a break in the radial profile near the optical radius of
the disk. Our main results, the scale lengths of the inner and outer disks at
151 MHz and 1.4 GHz, arm--interarm contrast, and the break scales of the
radio--far-infrared correlations, can be explained consistently by CRE
diffusion, leading to a longer propagation length of CRE of lower energy. The
distribution of CRE sources drops sharply at about 10 kpc radius, where the
star formation rate also decreases sharply. We find evidence that thermal
absorption is primarily caused by HII regions. The non-detection of
polarisation from M51 at 151 MHz is consistent with the estimates of Faraday
depolarisation. Future searches for polarised emission in this frequency range
should concentrate on regions with low star formation rates.Comment: 20 pages, 18 figures, accepted for publication in A&
Air Shower Measurements with LOFAR
Air showers from cosmic rays emit short, intense radio pulses. LOFAR is a new
radio telescope, that is being built in the Netherlands and Europe. Designed
primarily as a radio interferometer, the core of LOFAR will have a high density
of radio antennas, which will be extremely well calibrated. This makes LOFAR a
unique tool for the study of the radio properties of single air showers.
Triggering on the radio emission from air showers means detecting a short
radio pulse and discriminating real events from radio interference. At LOFAR we
plan to search for pulses in the digital data stream - either from single
antennas or from already beam-formed data - and calculate several parameters
characterizing the pulse shape to pick out real events in a second stage. In
addition, we will have a small scintillator array to test and confirm the
performance of the radio only trigger.Comment: Proceedings of the ARENA 2008 workshop, to be published in NIM
Radio Emission in Atmospheric Air Showers: First Measurements with LOPES-30
When Ultra High Energy Cosmic Rays interact with particles in the Earth's
atmosphere, they produce a shower of secondary particles propagating toward the
ground. LOPES-30 is an absolutely calibrated array of 30 dipole antennas
investigating the radio emission from these showers in detail and clarifying if
the technique is useful for largescale applications. LOPES-30 is co-located and
measures in coincidence with the air shower experiment KASCADE-Grande. Status
of LOPES-30 and first measurements are presented.Comment: Proceedings of ARENA 06, June 2006, University of Northumbria, U
The KASCADE-Grande Experiment and the LOPES Project
KASCADE-Grande is the extension of the multi-detector setup KASCADE to cover
a primary cosmic ray energy range from 100 TeV to 1 EeV. The enlarged EAS
experiment provides comprehensive observations of cosmic rays in the energy
region around the knee. Grande is an array of 700 x 700 sqm equipped with 37
plastic scintillator stations sensitive to measure energy deposits and arrival
times of air shower particles. LOPES is a small radio antenna array to operate
in conjunction with KASCADE-Grande in order to calibrate the radio emission
from cosmic ray air showers. Status and capabilities of the KASCADE-Grande
experiment and the LOPES project are presented.Comment: To appear in Nuclear Physics B, Proceedings Supplements, as part of
the volume for the CRIS 2004, Cosmic Ray International Seminar: GZK and
Surrounding
Results from the KASCADE, KASCADE-Grande, and LOPES experiments
The origin of high-energy cosmic rays in the energy range from 10^14 to 10^18
eV is explored with the KASCADE and KASCADE-Grande experiments. Radio signals
from air showers are measured with the LOPES experiment. An overview on results
is given.Comment: Talk at The ninth International Conference on Topics in Astroparticle
and Underground Physics, TAUP 2005, Zaragoza, September 10-14, 200
Exploring the making of a galactic wind in the star-bursting dwarf irregular galaxy IC 10 with LOFAR
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2018 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society.Low-mass galaxies are subject to strong galactic outflows, in which cosmic rays may play an important role; they can be best traced with low-frequency radio continuum observations, which are less affected by spectral ageing. We present a study of the nearby starburst dwarf irregular galaxy IC 10 using observations at 140MHz with the Low-Frequency Array (LOFAR), at 1580MHz with the Very Large Array (VLA), and at 6200MHz with the VLA and the 100-m Effelsberg telescope.We find that IC 10 has a low-frequency radio halo, which manifests itself as a second component (thick disc) in the minor axis profiles of the non-thermal radio continuum emission at 140 and 1580 MHz. These profiles are then fitted with 1D cosmic ray transport models for pure diffusion and advection.We find that a diffusion model fits best, with a diffusion coefficient of D = (0.4-0.8) × 10 26(E/GeV) 0.5 cm 2s -1, which is at least an order of magnitude smaller than estimates both from anisotropic diffusion and the diffusion length. In contrast, advection models, which cannot be ruled out due to the mild inclination, while providing poorer fits, result in advection speeds close to the escape velocity of ≈50 km s -1, as expected for a cosmic ray-driven wind. Our favoured model with an accelerating wind provides a self-consistent solution, where the magnetic field is in energy equipartition with both the warm neutral and warm ionized medium with an important contribution from cosmic rays. Consequently, cosmic rays can play a vital role for the launching of galactic winds in the disc-halo interface.Peer reviewe
- …