455 research outputs found

    Mucosa-associated bacterial diversity in necrotizing enterocolitis

    Get PDF
    Background: Previous studies of infant fecal samples have failed to clarify the role of gut bacteria in the pathogenesis of NEC. We sought to characterize bacterial communities within intestinal tissue resected from infants with and without NEC. Methods: 26 intestinal samples were resected from 19 infants, including 16 NEC samples and 10 non-NEC samples. Bacterial 16S rRNA gene sequences were amplified and sequenced. Analysis allowed for taxonomic identification, and quantitative PCR was used to quantify the bacterial load within samples. Results: NEC samples generally contained an increased total burden of bacteria. NEC and non-NEC sample sets were both marked by high inter-individual variability and an abundance of opportunistic pathogens. There was no statistically significant distinction between the composition of NEC and non-NEC microbial communities. K-means clustering enabled us to identify several stable clusters, including clusters of NEC and midgut volvulus samples enriched with Clostridium and Bacteroides. Another cluster containing both NEC and non-NEC samples was marked by an abundance of Enterobacteriaceae and decreased diversity among NEC samples. Conclusions: The results indicate that NEC is a disease without a uniform pattern of microbial colonization, but that NEC is associated with an abundance of strict anaerobes and a decrease in community diversity

    Laparoscopic Splenectomy in Children

    Get PDF
    BACKGROUND: Laparoscopic splenectomy is being performed more commonly in children, although its advantages are not clear. We sought to determine whether laparoscopic splenectomy was superior to open splenectomy. METHODS: The records of all pediatric patients undergoing splenectomy without significant comorbidities over a 12-year period were examined. The patients were divided into those undergoing laparoscopic splenectomy and those undergoing open splenectomy. Demographics, operative time, estimated blood loss, spleen size, length of stay, and total charges were compared between the groups. RESULTS: Eighty-one (58%) children underwent laparoscopic splenectomy, and 59 (42%) children underwent open splenectomy. The groups were similar in age and sex; hereditary spherocytosis was more common in the LS group. Operating time was longer in the laparoscopic splenectomy group (231 +/- 10 min vs 138 +/- 9 min; P\u3c0.001), but blood loss and complication rates were similar. Twelve (15%) conversions were necessary primarily due to spleen size. Although children undergoing LS had a shorter length of stay (2.4 +/- 0.1 vs 4.1 +/- 0.3 days; P\u3c0.001), they incurred higher charges (dollars 21199 +/- 664 vs dollars 15723 +/- 1737; P\u3c0.002). CONCLUSION: Laparoscopic splenectomy is a safe procedure in children, resulting in shorter hospital stay, which may translate into earlier return to activity and a smaller burden on the child\u27s caretakers

    Novel role for the innate immune receptor toll-like receptor 4 (TLR4) in the regulation of the wnt signaling pathway and photoreceptor apoptosis

    Get PDF
    Recent evidence has implicated innate immunity in regulating neuronal survival in the brain during stroke and other neurodegenerations. Photoreceptors are specialized light-detecting neurons in the retina that are essential for vision. In this study, we investigated the role of the innate immunity receptor TLR4 in photoreceptors. TLR4 activation by lipopolysaccharide (LPS) significantly reduced the survival of cultured mouse photoreceptors exposed to oxidative stress. With respect to mechanism, TLR4 suppressed Wnt signaling, decreased phosphorylation and activation of the Wnt receptor LRP6, and blocked the protective effect of the Wnt3a ligand. Paradoxically, TLR4 activation prior to oxidative injury protected photoreceptors, in a phenomenon known as preconditioning. Expression of TNFα and its receptors TNFR1 and TNFR2 decreased during preconditioning, and preconditioning was mimicked by TNFα antagonists, but was independent of Wnt signaling. Therefore, TLR4 is a novel regulator of photoreceptor survival that acts through the Wnt and TNFα pathways. © 2012 Yi et al

    Pulsed Streamer Discharge Characteristics of Ozone Production in Dry Air

    Get PDF
    Experimental investigation of HV short pulsed streamer discharges in dry air-fed ozonizers under various operating conditions are reported. Ozone concentration, energy input and ozone production yield (efficiency) were measured at various voltages (14 to 37 kV), pulse repetition rates (25 to 400 pulses per second, pps), flow rates (1.5 to 3.0 1/min) and different gap spacings (10 to 20 mm) at a pressure of 1.01×105 Pa in dry air. A spiral copper wire (1 mm in diameter) made to a cylindrical configuration (18 to 38 mm in diameter) in a concentric coaxial electrode system of various dimensions was employed. A magnetic pulse compressor provided the HV and current pulses. Higher voltage and higher repetition rates yielded higher concentrations of ozone at a fixed air flow rate. The present investigation was extended to assess the performance of this pulsed ozone generator using dry air under desired conditions of high concentration and high yield of ozone for industrial applications

    Pulsed Power Production of Ozone in 02/N2 iin a Coaxial Reactor without Dielectric Layer

    Get PDF
    Very short duration pulsed streamer discharges have been used to produce ozone in a gas mixture of nitrogen and oxygen at atmospheric pressure. The ratio of nitrogen to oxygen in the mixture was varied in the range from 2.5/0.5 to 0.5/2.5, while maintaining a total flow rate of 3 l/min. The production of ozone was found to be higher for a specific mixture ratio of N2/O2 than that in oxygen or in dry air. The production of ozone in O2 was higher than that in dry air. The production yield of ozone (g/kWh) increased with decreasing nitrogen in the O2/N2 mixture. It has been found that the peak of the streamer discharge current decreased with time after application of the pulsed power. This decrease in the current corresponded with the increase in the ozone production and is attributed to the loss of electrons in the discharge current due to their attachment to ozone to form negative ions

    Ozone Production Using Pulsed Dielectric Barrier Discharge in Oxygen

    Get PDF
    The production of ozone was investigated using a dielectric barrier discharge in oxygen, and employing short-duration pulsed power. The dependence of the ozone concentration (parts per million, ppm) and ozone production yield (g(O3)/kWh) on the peak pulsed voltage (17.5 to 57.9 kV) and the pulse repetition rate (25 to 400 pulses/s, pps) were investigated. In the present study, the following parameters were kept constant: a pressure of 1.01×105 Pa, a temperature of 26±4°C a gas flow rate of 3.0 1/min and a gaseous gap length of 11 mm. A concentric coaxial cylindrical reactor was used. A spiral copper wire (1 mm in diameter) was wound on a polyvinylchloride (PVC) cylindrical configuration (26 mm in diameter) and placed centrally in a concentric coaxial electrode system with 4 mm thick PVC dielectric layer adjacent to a copper outer electrode of 58 mm in internal diameter. HV and current pulses were provided by a magnetic pulse compressor power source

    Discovery and Validation of a New Class of Small Molecule Toll-Like Receptor 4 (TLR4) Inhibitors

    Get PDF
    Many inflammatory diseases may be linked to pathologically elevated signaling via the receptor for lipopolysaccharide (LPS), toll-like receptor 4 (TLR4). There has thus been great interest in the discovery of TLR4 inhibitors as potential anti-inflammatory agents. Recently, the structure of TLR4 bound to the inhibitor E5564 was solved, raising the possibility that novel TLR4 inhibitors that target the E5564-binding domain could be designed. We utilized a similarity search algorithm in conjunction with a limited screening approach of small molecule libraries to identify compounds that bind to the E5564 site and inhibit TLR4. Our lead compound, C34, is a 2-acetamidopyranoside (MW 389) with the formula C17H27NO9, which inhibited TLR4 in enterocytes and macrophages in vitro, and reduced systemic inflammation in mouse models of endotoxemia and necrotizing enterocolitis. Molecular docking of C34 to the hydrophobic internal pocket of the TLR4 co-receptor MD-2 demonstrated a tight fit, embedding the pyran ring deep inside the pocket. Strikingly, C34 inhibited LPS signaling ex-vivo in human ileum that was resected from infants with necrotizing enterocolitis. These findings identify C34 and the β-anomeric cyclohexyl analog C35 as novel leads for small molecule TLR4 inhibitors that have potential therapeutic benefit for TLR4-mediated inflammatory diseases. © 2013 Neal et al
    • …
    corecore