127 research outputs found

    Primary cervical malignant teratoma with a rib metastasis in an adult: Five-year survival after surgery and chemotherapy: A case report with a review of the literature

    Get PDF
    We report a case of a man presenting with a cervical malignant teratoma and a chondrosarcomatous rib metastasis. He was alive and free of recurrence five years and 10 months (= 70 months) after resection of the primary mass, followed by chemotherapy and subsequent resection of the rib tumor. This is the 35th patient reported in the literature and the first description in which an ‘adjuvant' or primary chemotherapy was used. Previous patients with a cervical malignant teratoma, reported after lethal outcome, had survivals of one to 22 months (median nine months). In all patients with a preoperative clinical impression of an aggressive, differentiated or undifferentiated malignancy, the definite diagnosis of teratoma could only be made histologically. By analogy to germ cell tumors, the prognosis of malignant teratoma might be improved if complete excision is combined with new, adjuvant chemotherapy protocols for germ cell tumors. Lessons learned from this case are placed in the context of germ cell tumors in general and of non-gonadal malignant teratomas in particula

    Relative drifts and biases between six ozone limb satellite measurements from the last decade

    Get PDF
    As part of European Space Agency’s (ESA) climate change initiative, high vertical resolution ozone profiles from three instruments all aboard ESA’s Envisat (GOMOS, MIPAS, SCIAMACHY) and ESA’s third party missions (OSIRIS, SMR, ACE-FTS) are to be combined in order to create an essential climate variable data record for the last decade. A prerequisite before combining data is the examination of differences and drifts between the data sets. In this paper, we present a detailed analysis of ozone profile differences based on pairwise collocated measurements, including the evolution of the differences with time. Such a diagnosis is helpful to identify strengths and weaknesses of each data set that may vary in time and introduce uncertainties in long-term trend estimates. The analysis reveals that the relative drift between the sensors is not statistically significant for most pairs of instruments. The relative drift values can be used to estimate the added uncertainty in physical trends. The added drift uncertainty is estimated at about 3% decade1^{-1} (1σ). Larger differences and variability in the differences are found in the lowermost stratosphere (below 20 km) and in the mesosphere

    Weighted norm inequalities for polynomial expansions associated to some measures with mass points

    Full text link
    Fourier series in orthogonal polynomials with respect to a measure ν\nu on [1,1][-1,1] are studied when ν\nu is a linear combination of a generalized Jacobi weight and finitely many Dirac deltas in [1,1][-1,1]. We prove some weighted norm inequalities for the partial sum operators SnS_n, their maximal operator SS^* and the commutator [Mb,Sn][M_b, S_n], where MbM_b denotes the operator of pointwise multiplication by b \in \BMO. We also prove some norm inequalities for SnS_n when ν\nu is a sum of a Laguerre weight on R+\R^+ and a positive mass on 00

    Pupillary Stroop effects

    Get PDF
    We recorded the pupil diameters of participants performing the words’ color-naming Stroop task (i.e., naming the color of a word that names a color). Non-color words were used as baseline to firmly establish the effects of semantic relatedness induced by color word distractors. We replicated the classic Stroop effects of color congruency and color incongruency with pupillary diameter recordings: relative to non-color words, pupil diameters increased for color distractors that differed from color responses, while they reduced for color distractors that were identical to color responses. Analyses of the time courses of pupil responses revealed further differences between color-congruent and color-incongruent distractors, with the latter inducing a steep increase of pupil size and the former a relatively lower increase. Consistent with previous findings that have demonstrated that pupil size increases as task demands rise, the present results indicate that pupillometry is a robust measure of Stroop interference, and it represents a valuable addition to the cognitive scientist’s toolbox

    Relative drifts and biases between six ozone limb satellite measurements from the last decade

    Get PDF
    As part of European Space Agency’s (ESA) climate change initiative, high vertical resolution ozone profiles from three instruments all aboard ESA’s Envisat (GOMOS, MIPAS, SCIAMACHY) and ESA’s third party missions (OSIRIS, SMR, ACE-FTS) are to be combined in order to create an essential climate variable data record for the last decade. A prerequisite before combining data is the examination of differences and drifts between the data sets. In this paper, we present a detailed analysis of ozone profile differences based on pairwise collocated measurements, including the evolution of the differences with time. Such a diagnosis is helpful to identify strengths and weaknesses of each data set that may vary in time and introduce uncertainties in long-term trend estimates. The analysis reveals that the relative drift between the sensors is not statistically significant for most pairs of instruments. The relative drift values can be used to estimate the added uncertainty in physical trends. The added drift uncertainty is estimated at about 3% decade1^{-1} (1σ). Larger differences and variability in the differences are found in the lowermost stratosphere (below 20 km) and in the mesosphere

    Relative Drifts and Biases Between Six Ozone Limb Satellite Measurements From the Last Decade

    Get PDF
    As part of European Space Agency\u27s (ESA) climate change initiative, high vertical resolution ozone profiles from three instruments all aboard ESA\u27s Envisat (GOMOS, MIPAS, SCIAMACHY) and ESA\u27s third party missions (OSIRIS, SMR, ACE-FTS) are to be combined in order to create an essential climate variable data record for the last decade. A prerequisite before combining data is the examination of differences and drifts between the data sets. In this paper, we present a detailed analysis of ozone profile differences based on pairwise collocated measurements, including the evolution of the differences with time. Such a diagnosis is helpful to identify strengths and weaknesses of each data set that may vary in time and introduce uncertainties in long-term trend estimates. The analysis reveals that the relative drift between the sensors is not statistically significant for most pairs of instruments. The relative drift values can be used to estimate the added uncertainty in physical trends. The added drift uncertainty is estimated at about 3% decade-1 (1σ). Larger differences and variability in the differences are found in the lowermost stratosphere (below 20 km) and in the mesosphere

    Color perception deficits in co-existing attention-deficit/hyperactivity disorder and chronic tic disorders

    Get PDF
    Preliminary findings suggest that color perception, particularly of blue-yellow stimuli, is impaired in attention-deficit/hyperactivity disorder (ADHD) as well as in chronic tic disorders (CTD). However, these findings have been not replicated and it is unclear what these deficits mean for the comorbidity of ADHD + CTD. Four groups (ADHD, CTD, ADHD + CTD, controls) of children with similar age, IQ and gender distribution were investigated with the Farnsworth-Munsell 100 Hue Test (FMT) and the Stroop-Color-Word Task using a factorial design. Color perception deficits, as indexed by the FMT, were found for both main factors (ADHD and CTD), but there were no interaction effects. A preponderance of deficits on the blue-yellow compared to the red-green axis was detected for ADHD. In the Stroop task only the 'pure' ADHD group showed impairments in interference control and other parameters of Stroop performance. No significant correlations between any FMT parameter and color naming in the Stroop task were found. Basic color perception deficits in both ADHD and CTD could be found. Beyond that, it could be shown that these deficits are additive in the case of comorbidity (ADHD + CTD). Performance deficits on the Stroop task were present only in the 'pure' ADHD group. Hence, the latter may be compensated in the comorbid group by good prefrontal capabilities of CTD. The influence of color perception deficits on Stroop task performance might be negligible. © 2007 Springer-Verlag

    Overt is no better than covert when rehearsing visuo-spatial information in working memory

    Get PDF
    In the present study, we examined whether eye movements facilitate retention of visuo-spatial information in working memory. In two experiments, participants memorised the sequence of the spatial locations of six digits across a retention interval. In some conditions, participants were free to move their eyes during the retention interval, but in others they either were required to remain fixated or were instructed to move their eyes exclusively to a selection of the memorised locations. Memory performance was no better when participants were free to move their eyes during the memory interval than when they fixated a single location. Furthermore, the results demonstrated a primacy effect in the eye movement behaviour that corresponded with the memory performance. We conclude that overt eye movements do not provide a benefit over covert attention for rehearsing visuo-spatial information in working memory

    Visual laterality in dolphins: importance of the familiarity of stimuli

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many studies of cerebral asymmetries in different species lead, on the one hand, to a better understanding of the functions of each cerebral hemisphere and, on the other hand, to develop an evolutionary history of hemispheric laterality. Our animal model is particularly interesting because of its original evolutionary path, i.e. return to aquatic life after a terrestrial phase. The rare reports concerning visual laterality of marine mammals investigated mainly discrimination processes. As dolphins are migrant species they are confronted to a changing environment. Being able to categorize new versus familiar objects would allow dolphins a rapid adaptation to novel environments. Visual laterality could be a prerequisite to this adaptability. To date, no study, to our knowledge, has analyzed the environmental factors that could influence their visual laterality.</p> <p>Results</p> <p>We investigated visual laterality expressed spontaneously at the water surface by a group of five common bottlenose dolphins (<it>Tursiops truncatus</it>) in response to various stimuli. The stimuli presented ranged from very familiar objects (known and manipulated previously) to familiar objects (known but never manipulated) to unfamiliar objects (unknown, never seen previously). At the group level, dolphins used their left eye to observe very familiar objects and their right eye to observe unfamiliar objects. However, eyes are used indifferently to observe familiar objects with intermediate valence.</p> <p>Conclusion</p> <p>Our results suggest different visual cerebral processes based either on the global shape of well-known objects or on local details of unknown objects. Moreover, the manipulation of an object appears necessary for these dolphins to construct a global representation of an object enabling its immediate categorization for subsequent use. Our experimental results pointed out some cognitive capacities of dolphins which might be crucial for their wild life given their fission-fusion social system and migratory behaviour.</p

    The what and why of perceptual asymmetries in the visual domain

    Get PDF
    Perceptual asymmetry is one of the most important characteristics of our visual functioning. We carefully reviewed the scientific literature in order to examine such asymmetries, separating them into two major categories: within-visual field asymmetries and between-visual field asymmetries. We explain these asymmetries in terms of perceptual aspects or tasks, the what of the asymmetries; and in terms of underlying mechanisms, the why of the asymmetries. Tthe within-visual field asymmetries are fundamental to orientation, motion direction, and spatial frequency processing. between-visual field asymmetries have been reported for a wide range of perceptual phenomena. foveal dominance over the periphery, in particular, has been prominent for visual acuity, contrast sensitivity, and colour discrimination. Tthis also holds true for object or face recognition and reading performance. upper-lower visual field asymmetries in favour of the lower have been demonstrated for temporal and contrast sensitivities, visual acuity, spatial resolution, orientation, hue and motion processing. Iin contrast, the upper field advantages have been seen in visual search, apparent size, and object recognition tasks. left-right visual field asymmetries include the left field dominance in spatial (e.g., orientation) processing and the right field dominance in non-spatial (e.g., temporal) processing. left field is also better at low spatial frequency or global and coordinate spatial processing, whereas the right field is better at high spatial frequency or local and categorical spatial processing. All these asymmetries have inborn neural/physiological origins, the primary why, but can be also susceptible to visual experience, the critical why (promotes or blocks the asymmetries by altering neural functions)
    corecore