Abstract

Fourier series in orthogonal polynomials with respect to a measure ν\nu on [1,1][-1,1] are studied when ν\nu is a linear combination of a generalized Jacobi weight and finitely many Dirac deltas in [1,1][-1,1]. We prove some weighted norm inequalities for the partial sum operators SnS_n, their maximal operator SS^* and the commutator [Mb,Sn][M_b, S_n], where MbM_b denotes the operator of pointwise multiplication by b \in \BMO. We also prove some norm inequalities for SnS_n when ν\nu is a sum of a Laguerre weight on R+\R^+ and a positive mass on 00

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 24/02/2019