1,912 research outputs found

    Near-infrared line identification in type Ia supernovae during the transitional phase

    Full text link
    We present near-infrared synthetic spectra of a delayed-detonation hydrodynamical model and compare them to observed spectra of four normal type Ia supernovae ranging from day +56.5 to day +85. This is the epoch during which supernovae are believed to be undergoing the transition from the photospheric phase, where spectra are characterized by line scattering above an optically thick photosphere, to the nebular phase, where spectra consist of optically thin emission from forbidden lines. We find that most spectral features in the near-infrared can be accounted for by permitted lines of Fe II and Co II. In addition, we find that [Ni II] fits the emission feature near 1.98 {\mu}m, suggesting that a substantial mass of 58Ni exists near the center of the ejecta in these objects, arising from nuclear burning at high density. A tentative identification of Mn II at 1.15 {\mu}m may support this conclusion as well.Comment: accepted to Ap

    Tracking specialized T cell subsets Following Immunization Based on Fluorescent Reporter Protein

    Get PDF
    The intestine relies upon T regulatory and effector cells to regulate immune response to multiple antigens. A full understanding of this phenomenon would be significant in the treatment of food intolerance and inflammatory bowel diseases (IBDs). The role of Retinoic Acid (RA) in T-cell migration to the gut is well documented. However, the distribution of tissues where this exposure to RA occurs has not been extensively mapped. In order to determine this, the cre-lox system was used to engineer a RA-responsive reporter gene that expresses the fluorescent protein tdTomato following RA exposure. The tissues were then imaged and analyzed using histo-cytometry to determine distribution of cells with RA exposure. RA exposure in various tissue microenvironments was characterized using flow cytometry, PCR, and confocal microscopy imaging to determine the changes in lymphoid expression of tdTomato during immune activation. It was found that intestinal and lymphoid tissues had greater concentrations of cells with prior RA exposure, particularly the Peyer’s Patch, MLN, and Spleen. The preliminary results of these experiments indicate that immune activation leads to a higher density of tdTomato expressing cells in the intestine and lymphoid tissues, but lower in peripheral organs. These results indicate that immunization causes T-cells to be drawn out of peripheral tissues and into gut-associated lymphoid tissues. It is worth looking into the composition of these T-cells as compared to the base population

    Learning from the early adopters: developing the digital practitioner

    Get PDF
    This paper explores how Sharpe and Beetham’s Digital Literacies Framework which was derived to model students’ digital literacies, can be applied to lecturers’ digital literacy practices. Data from a small-scale phenomenological study of higher education lecturers who used Web 2.0 in their teaching and learning practices are used to examine if this pyramid model represents their motivations for adopting technology-enhanced learning in their pedagogic practices. The paper argues that whilst Sharpe and Beetham’s model has utility in many regards, these lecturers were mainly motivated by the desire to achieve their pedagogic goals rather than by a desire to become a digital practitioner

    Non-Gaussian statistics of electrostatic fluctuations of hydration shells

    Full text link
    We report the statistics of electric field fluctuations produced by SPC/E water inside a Kihara solute given as a hard-sphere core with a Lennard-Jones layer at its surface. The statistics of electric field fluctuations, obtained from numerical simulations, are studied as a function of the magnitude of a point dipole placed close to the solute-water interface. The free energy surface as a function of the electric field projected on the dipole direction shows a cross-over with the increasing dipole magnitude. While it is a single-well harmonic function at low dipole values, it becomes a double-well surface at intermediate dipole moment magnitudes, transforming to a single-well surface, with a non-zero minimum position, at still higher dipoles. A broad intermediate region where the interfacial waters fluctuate between the two minima is characterized by intense field fluctuations, with non-Gaussian statistics and the variance far exceeding the linear-response expectations. The excited state of the surface water is found to be lifted above the ground state by the energy required to break approximately two hydrogen bonds. This state is pulled down in energy by the external electric field of the solute dipole, making it readily accessible to thermal excitations. The excited state is a localized surface defect in the hydrogen-bond network creating a stress in the nearby network, but otherwise relatively localized in the region closest to the solute dipole

    Transport through an impurity tunnel coupled to a Si/SiGe quantum dot

    Get PDF
    Achieving controllable coupling of dopants in silicon is crucial for operating donor-based qubit devices, but it is difficult because of the small size of donor-bound electron wavefunctions. Here we report the characterization of a quantum dot coupled to a localized electronic state, and we present evidence of controllable coupling between the quantum dot and the localized state. A set of measurements of transport through this device enable the determination of the most likely location of the localized state, consistent with an electronically active impurity in the quantum well near the edge of the quantum dot. The experiments we report are consistent with a gate-voltage controllable tunnel coupling, which is an important building block for hybrid donor and gate-defined quantum dot devices.Comment: 5 pages, 3 figure

    The Green Bank Ammonia Survey: Unveiling the Dynamics of the Barnard 59 star-forming Clump

    Get PDF
    Understanding the early stages of star formation is a research field of ongoing development, both theoretically and observationally. In this context, molecular data have been continuously providing observational constraints on the gas dynamics at different excitation conditions and depths in the sources. We have investigated the Barnard 59 core, the only active site of star formation in the Pipe Nebula, to achieve a comprehensive view of the kinematic properties of the source. These information were derived by simultaneously fitting ammonia inversion transition lines (1,1) and (2,2). Our analysis unveils the imprint of protostellar feedback, such as increasing line widths, temperature and turbulent motions in our molecular data. Combined with complementary observations of dust thermal emission, we estimate that the core is gravitationally bound following a virial analysis. If the core is not contracting, another source of internal pressure, most likely the magnetic field, is supporting it against gravitational collapse and limits its star formation efficiency.Comment: 18 pages, 18 figure
    • …
    corecore