1,160 research outputs found

    Pairing-excitation versus intruder states in 68Ni and 90Zr

    Full text link
    A discussion on the nature of the 0+ states in 68Ni (Z=28, N=40) is presented and a comparison is made with its valence counterpart 90Zr (Z=40, N=50). Evidence is given for a 0+ proton intruder state at only ~2.2 MeV excitation energy in 68Ni, while the analogous neutron intruder states in 90Zr reside at 4126 keV and 5441 keV. The application of a shell-model description of 0+ intruder states reveals that many pair-scattered neutrons across N=40 have to be involved to explain the low excitation energy of the proton-intruder configuration in 68Ni.Comment: 10 pages, 2 figures, 1 tabl

    How magic is the magic 68Ni nucleus?

    Get PDF
    We calculate the B(E2) strength in 68Ni and other nickel isotopes using several theoretical approaches. We find that in 68Ni the gamma transition to the first 2+ state exhausts only a fraction of the total B(E2) strength, which is mainly collected in excited states around 5 MeV. This effect is sensitive to the energy splitting between the fp shell and the g_{9/2}orbital. We argue that the small experimental B(E2) value is not strong evidence for the double-magic character of 68Ni.Comment: 4 pages, 4 figure

    Review of CFD Guidelines for Dispersion Modeling

    Get PDF
    This is the review of CFD (Computational Fluid Dynamics) guidelines for dispersion modeling in the USA, Japan and Germany. Most parts of this review are based on the short report of the special meeting on CFD Guidelines held at the International Symposium on Computational Wind Engineering (CWE2014), University of Hamburg, June 2014. The objective of this meeting was to introduce and discuss the action program to make worldwide guidelines of CFD gas-dispersion modeling. The following six gas-dispersion guidelines including Verification and Validation (V&V) schemes are introduced by each author; (1) US CFD guidelines; (2) COST/ES1006; (3) German VDI (Verein Deutscher Ingenieure) guidelines; (4) Atomic Energy Society of Japan; (5) Japan Society of Atmospheric Environment; (6) Architectural Institute of Japan. All guidelines were summarized in the same format table shown in the main chapters in order to compare them with each other. In addition to the summary of guidelines, the overview of V&V schemes and many guidelines of CFD modeling in the USA are explained

    Dominant g(9/2)^2 neutron configuration in the 4+1 state of 68Zn based on new g factor measurements

    Full text link
    The gg factor of the 41+4_1^+ state in 68^{68}Zn has been remeasured with improved energy resolution of the detectors used. The value obtained is consistent with the previous result of a negative gg factor thus confirming the dominant 0g9/20g_{9/2} neutron nature of the 41+4_1^+ state. In addition, the accuracy of the gg factors of the 21+2_1^+, 22+2_2^+ and 31−3_1^- states has been improved an d their lifetimes were well reproduced. New large-scale shell model calculations based on a 56^{56}Ni core and an 0f5/21pg9/20f_{5/2}1pg_{9/2} model space yield a theoretical value, g(41+)=+0.008g(4_1^+) = +0.008. Although the calculated value is small, it cannot fully explain the experimental value, g(41+)=−0.37(17)g(4_1^+) = -0.37(17). The magnitude of the deduced B(E2) of the 41+4_1^+ and 21+2_1^+ transition is, however, rather well described. These results demonstrate again the importance of gg factor measurements for nuclear structure determination s due to their specific sensitivity to detailed proton and neutron components in the nuclear wave functions.Comment: 7 pages, 3 figs, submitted to PL

    Core excitations across the neutron shell gap in ÂČ⁰⁷Tl

    Get PDF
    The single closed-neutron-shell, one proton-hole nucleus 207Tl was populated in deep-inelastic collisions of a 208Pb beam with a 208Pb target. The yrast and near-yrast level scheme has been established up to high excitation energy, comprising an octupol

    Realistic Shell-Model Calculations for Proton-Rich N=50 Isotones

    Get PDF
    The structure of the N=50 isotones 98Cd, 97Ag, and 96Pd is studied in terms of shell model employing a realistic effective interaction derived from the Bonn-A nucleon-nucleon potential. The single-hole energies are fixed by resorting to an analysis of the low-energy spectra of the isotones with A>= 91. Comparison shows that our results are in very satisfactory agreement with the available experimental data. This supports confidence in the predictions of our calculationsComment: 8 pages, 3 figures, to be published on Journal of Physics

    Cognitive conflicts in major depression : Between desired change and personal coherence

    Get PDF
    This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposesThe notion of intrapsychic conflict has been present in psychopathology for more than a century within different theoretical orientations. However, internal conflicts have not received enough empirical attention, nor has their importance in depression been fully elaborated. This study is based on the notion of cognitive conflict, understood as implicative dilemma (ID), and on a new way of identifying these conflicts by means of the Repertory Grid Technique. Our aim was to explore the relevance of cognitive conflicts among depressive patientsPeer reviewedFinal Published versio

    Octupole transitions in the 208Pb region

    Get PDF
    The 208Pb region is characterised by the existence of collective octupole states. Here we populated such states in 208Pb + 208Pb deep-inelastic reactions. γ-ray angular distribution measurements were used to infer the octupole character of several E3 transitions. The octupole character of the 2318 keV 17− → 14+ in 208Pb, 2485 keV 19/2 − → 13/2 + in 207Pb, 2419 keV 15/2 − → 9/2 + in 209Pb and 2465 keV 17/2 + → 11/2 − in 207Tl transitions was demonstrated for the first time. In addition, shell model calculations were performed using two different sets of two-body matrix elements. Their predictions were compared with emphasis on collective octupole states.This work is supported by the Science and Technology Facilities Council (STFC), UK, US Department of Energy, Office of Nuclear Physics, under Contract No. DEAC02-06CH11357 and DE-FG02-94ER40834, NSF grant PHY-1404442
    • 

    corecore