667 research outputs found

    Psychometric Network Analysis of the Hungarian WAIS

    Get PDF
    The positive manifold—the finding that cognitive ability measures demonstrate positive correlations with one another—has led to models of intelligence that include a general cognitive ability or general intelligence (g). This view has been reinforced using factor analysis and reflective, higher-order latent variable models. However, a new theory of intelligence, Process Overlap Theory (POT), posits that g is not a psychological attribute but an index of cognitive abilities that results from an interconnected network of cognitive processes. These competing theories of intelligence are compared using two different statistical modeling techniques: (a) latent variable modeling and (b) psychometric network analysis. Network models display partial correlations between pairs of observed variables that demonstrate direct relationships among observations. Secondary data analysis was conducted using the Hungarian Wechsler Adult Intelligence Scale Fourth Edition (H-WAIS-IV). The underlying structure of the H-WAIS-IV was first assessed using confirmatory factor analysis assuming a reflective, higher-order model and then reanalyzed using psychometric network analysis. The compatibility (or lack thereof) of these theoretical accounts of intelligence with the data are discussed

    Association of differential gene expression with imatinib mesylate and omacetaxine mepesuccinate toxicity in lymphoblastoid cell lines

    Get PDF
    BackgroundImatinib mesylate is currently the drug of choice to treat chronic myeloid leukemia. However, patient resistance and cytotoxicity make secondary lines of treatment, such as omacetaxine mepesuccinate, a necessity. Given that drug cytotoxicity represents a major problem during treatment, it is essential to understand the biological pathways affected to better predict poor drug response and prioritize a treatment regime.MethodsWe conducted cell viability and gene expression assays to determine heritability and gene expression changes associated with imatinib and omacetaxine treatment of 55 non-cancerous lymphoblastoid cell lines, derived from 17 pedigrees. In total, 48,803 transcripts derived from Illumina Human WG-6 BeadChips were analyzed for each sample using SOLAR, whilst correcting for kinship structure.ResultsCytotoxicity within cell lines was highly heritable following imatinib treatment (h2&thinsp;=&thinsp;0.60-0.73), but not omacetaxine treatment. Cell lines treated with an IC20 dose of imatinib or omacetaxine showed differential gene expression for 956 (1.96%) and 3,892 transcripts (7.97%), respectively; 395 of these (0.8%) were significantly influenced by both imatinib and omacetaxine treatment. k-means clustering and DAVID functional annotation showed expression changes in genes related to kinase binding and vacuole-related functions following imatinib treatment, whilst expression changes in genes related to cell division and apoptosis were evident following treatment with omacetaxine. The enrichment scores for these ontologies were very high (mostly &gt;10).ConclusionsInduction of gene expression changes related to different pathways following imatinib and omacetaxine treatment suggests that the cytotoxicity of such drugs may be differentially tolerated by individuals based on their genetic background.<br /

    Transcriptome sequencing study implicates immune-related genes differentially expressed in schizophrenia: new data and a meta-analysis

    Get PDF
    We undertook an RNA sequencing (RNAseq)-based transcriptomic profiling study on lymphoblastoid cell lines of a European ancestry sample of 529 schizophrenia cases and 660 controls, and found 1058 genes to be differentially expressed by affection status. These differentially expressed genes were enriched for involvement in immunity, especially the 697 genes with higher expression in cases. Comparing the current RNAseq transcriptomic profiling to our previous findings in an array-based study of 268 schizophrenia cases and 446 controls showed a highly significant positive correlation over all genes. Fifteen (18%) of the 84 genes with significant (false discovery rateo0.05) expression differences between cases and controls in the previous study and analyzed here again were differentially expressed by affection status here at a genome-wide significance level (Bonferroni Po0.05 adjusted for 8141 analyzed genes in total, or Po ~ 6.1 × 10− 6), all with the same direction of effect, thus providing corroborative evidence despite each sample of fully independent subjects being studied by different technological approaches. Meta-analysis of the RNAseq and array data sets (797 cases and 1106 controls) showed 169 additional genes (besides those found in the primary RNAseq-based analysis) to be differentially expressed, and provided further evidence of immune gene enrichment. In addition to strengthening our previous array-based gene expression differences in schizophrenia cases versus controls and providing transcriptomic support for some genes implicated by other approaches for schizophrenia, our study detected new genes differentially expressed in schizophrenia. We highlight RNAseq-based differential expression of various genes involved in neurodevelopment and/or neuronal function, and discuss caveats of the approach

    Behaviour of chromium isotopes in the eastern sub-tropical Atlantic Oxygen Minimum Zone

    Get PDF
    Constraints on the variability of chromium (Cr) isotopic compositions in the modern ocean are required to validate the use of Cr isotopic signatures in ancient authigenic marine sediments for reconstructing past levels of atmospheric and ocean oxygenation. This study presents dissolved Cr concentrations (CrT, where CrT = Cr(VI) + Cr(III)) and Cr isotope data (δ53Cr) for shelf, slope and open ocean waters within the oxygen minimum zone (OMZ) of the eastern sub-tropical Atlantic Ocean. Although dissolved oxygen concentrations were as low as 44–90 μmol kg−1 in the core of the OMZ, there was no evidence for removal of Cr(VI). Nonetheless, there was significant variability in seawater δ53Cr, with values ranging from 1.08 to 1.72‰. Shelf CrT concentrations were slightly lower (2.21 ± 0.07 nmol kg−1) than in open ocean waters at the same water depth (between 0 and 160 m, 2.48 ± 0.07 nmol kg−1). The shelf waters also had higher δ53Cr values (1.41 ± 0.14‰ compared to 1.18 ± 0.05‰ for open ocean waters shallower than 160 m). This is consistent with partial reduction of Cr(VI) to Cr(III), with subsequent removal of isotopically light Cr(III) onto biogenic particles. We also provide evidence for input of relatively isotopically heavy Cr from sediments on the shelf. Intermediate and deep water masses (AAIW and NADW) show a rather limited range of δ53Cr values (1.19 ± 0.09‰) and inputs of Cr from remineralisation of organic material or re-oxidation of Cr(III) appear to be minimal. Authigenic marine precipitates deposited in deep water in the open ocean therefore have the potential to faithfully record seawater δ53Cr, whereas archives of seawater δ53Cr derived from shelf sediments must be interpreted with caution

    Genome sequencing unveils a regulatory landscape of platelet reactivity

    Get PDF
    Platelet aggregation at the site of atherosclerotic vascular injury is the underlying pathophysiology of myocardial infarction and stroke. To build upon prior GWAS, here we report on 16 loci identified through a whole genome sequencing (WGS) approach in 3,855 NHLBI Trans-Omics for Precision Medicine (TOPMed) participants deeply phenotyped for platelet aggregation. We identify the RGS18 locus, which encodes a myeloerythroid lineage-specific regulator of G-protein signaling that co-localizes with expression quantitative trait loci (eQTL) signatures for RGS18 expression in platelets. Gene-based approaches implicate the SVEP1 gene, a known contributor of coronary artery disease risk. Sentinel variants at RGS18 and PEAR1 are associated with thrombosis risk and increased gastrointestinal bleeding risk, respectively. Our WGS findings add to previously identified GWAS loci, provide insights regarding the mechanism(s) by which genetics may influence cardiovascular disease risk, and underscore the importance of rare variant and regulatory approaches to identifying loci contributing to complex phenotypes

    Transcriptomic signatures of schizophrenia revealed by dopamine perturbation in an ex vivo model

    Get PDF
    The dopaminergic hypothesis of schizophrenia (SZ) postulates that dopaminergic over activity causes psychosis, a central feature of SZ, based on the observation that blocking dopamine (DA) improves psychotic symptoms. DA is known to have both receptor- and non-receptor-mediated effects, including oxidative mechanisms that lead to apoptosis. The role of DA-mediated oxidative processes in SZ has been little studied. Here, we have used a cell perturbation approach and measured transcriptomic profiles by RNAseq to study the effect of DA exposure on transcription in B-cell transformed lymphoblastoid cell lines (LCLs) from 514 SZ cases and 690 controls. We found that DA had widespread effects on both cell growth and gene expression in LCLs. Overall, 1455 genes showed statistically significant differential DA response in SZ cases and controls. This set of differentially expressed genes is enriched for brain expression and for functions related to immune processes and apoptosis, suggesting that DA may play a role in SZ pathogenesis through modulating those systems. Moreover, we observed a non-significant enrichment of genes near genome-wide significant SZ loci and with genes spanned by SZ-associated copy number variants (CNVs), which suggests convergent pathogenic mechanisms detected by both genetic association and gene expression. The study suggests a novel role of DA in the biological processes of immune and apoptosis that may be relevant to SZ pathogenesis. Furthermore, our results show the utility of pathophysiologically relevant perturbation experiments to investigate the biology of complex mental disorders

    Dopamine perturbation of gene co-expression networks reveals differential response in schizophrenia for translational machinery

    Get PDF
    The dopaminergic hypothesis of schizophrenia (SZ) postulates that positive symptoms of SZ, in particular psychosis, are due to disturbed neurotransmission via the dopamine (DA) receptor D2 (DRD2). However, DA is a reactive molecule that yields various oxidative species, and thus has important non-receptor-mediated effects, with empirical evidence of cellular toxicity and neurodegeneration. Here we examine non-receptor-mediated effects of DA on gene co-expression networks and its potential role in SZ pathology. Transcriptomic profiles were measured by RNA-seq in B-cell transformed lymphoblastoid cell lines from 514 SZ cases and 690 controls, both before and after exposure to DA ex vivo (100 μM). Gene co-expression modules were identified using Weighted Gene Co-expression Network Analysis for both baseline and DA-stimulated conditions, with each module characterized for biological function and tested for association with SZ status and SNPs from a genome-wide panel. We identified seven co-expression modules under baseline, of which six were preserved in DA-stimulated data. One module shows significantly increased association with SZ after DA perturbation (baseline: P = 0.023; DA-stimulated: P = 7.8 × 10-5; ΔAIC = −10.5) and is highly enriched for genes related to ribosomal proteins and translation (FDR = 4 × 10−141), mitochondrial oxidative phosphorylation, and neurodegeneration. SNP association testing revealed tentative QTLs underlying module co-expression, notably at FASTKD2 (top P = 2.8 × 10−6), a gene involved in mitochondrial translation. These results substantiate the role of translational machinery in SZ pathogenesis, providing insights into a possible dopaminergic mechanism disrupting mitochondrial function, and demonstrates the utility of disease-relevant functional perturbation in the study of complex genetic etiologies

    Twenty Thousand-Year-Old Huts at a Hunter-Gatherer Settlement in Eastern Jordan

    Get PDF
    Ten thousand years before Neolithic farmers settled in permanent villages, hunter-gatherer groups of the Epipalaeolithic period (c. 22–11,600 cal BP) inhabited much of southwest Asia. The latest Epipalaeolithic phase (Natufian) is well-known for the appearance of stone-built houses, complex site organization, a sedentary lifestyle and social complexity—precursors for a Neolithic way of life. In contrast, pre-Natufian sites are much less well known and generally considered as campsites for small groups of seasonally-mobile hunter-gatherers. Work at the Early and Middle Epipalaeolithic aggregation site of Kharaneh IV in eastern Jordan highlights that some of these earlier sites were large aggregation base camps not unlike those of the Natufian and contributes to ongoing debates on their duration of occupation. Here we discuss the excavation of two 20,000-year-old hut structures at Kharaneh IV that pre-date the renowned stone houses of the Natufian. Exceptionally dense and extensive occupational deposits exhibit repeated habitation over prolonged periods, and contain structural remains associated with exotic and potentially symbolic caches of objects (shell, red ochre, and burnt horn cores) that indicate substantial settlement of the site pre-dating the Natufian and outside of the Natufian homeland as currently understood

    Macrosystems ecology: Understanding ecological patterns and processes at continental scales

    Get PDF
    Macrosystems ecology is the study of diverse ecological phenomena at the scale of regions to continents and their interactions with phenomena at other scales. This emerging subdiscipline addresses ecological questions and environmental problems at these broad scales. Here, we describe this new field, show how it relates to modern ecological study, and highlight opportunities that stem from taking a macrosystems perspective. We present a hierarchical framework for investigating macrosystems at any level of ecological organization and in relation to broader and finer scales. Building on well-established theory and concepts from other subdisciplines of ecology, we identify feedbacks, linkages among distant regions, and interactions that cross scales of space and time as the most likely sources of unexpected and novel behaviors in macrosystems. We present three examples that highlight the importance of this multiscaled systems perspective for understanding the ecology of regions to continents
    • …
    corecore