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ARTICLE

Genome sequencing unveils a regulatory landscape
of platelet reactivity
Ali R. Keramati 1,2,124, Ming-Huei Chen3,4,124, Benjamin A. T. Rodriguez3,4,5,124, Lisa R. Yanek 2,6,

Arunoday Bhan7, Brady J. Gaynor 8,9, Kathleen Ryan8,9, Jennifer A. Brody 10, Xue Zhong11, Qiang Wei12,

NHLBI Trans-Omics for Precision (TOPMed) Consortium*, Kai Kammers13, Kanika Kanchan14, Kruthika Iyer14,

Madeline H. Kowalski15, Achilleas N. Pitsillides4,16, L. Adrienne Cupples 4,16, Bingshan Li 12,

Thorsten M. Schlaeger7, Alan R. Shuldiner9, Jeffrey R. O’Connell8,9, Ingo Ruczinski17, Braxton D. Mitchell 8,9,

Nauder Faraday2,18, Margaret A. Taub17, Lewis C. Becker1,2, Joshua P. Lewis 8,9,125✉,

Rasika A. Mathias 2,14,125✉ & Andrew D. Johnson 3,4,125✉

Platelet aggregation at the site of atherosclerotic vascular injury is the underlying patho-

physiology of myocardial infarction and stroke. To build upon prior GWAS, here we report on

16 loci identified through a whole genome sequencing (WGS) approach in 3,855 NHLBI

Trans-Omics for Precision Medicine (TOPMed) participants deeply phenotyped for platelet

aggregation. We identify the RGS18 locus, which encodes a myeloerythroid lineage-specific

regulator of G-protein signaling that co-localizes with expression quantitative trait loci

(eQTL) signatures for RGS18 expression in platelets. Gene-based approaches implicate the

SVEP1 gene, a known contributor of coronary artery disease risk. Sentinel variants at RGS18

and PEAR1 are associated with thrombosis risk and increased gastrointestinal bleeding risk,

respectively. Our WGS findings add to previously identified GWAS loci, provide insights

regarding the mechanism(s) by which genetics may influence cardiovascular disease risk, and

underscore the importance of rare variant and regulatory approaches to identifying loci

contributing to complex phenotypes.
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Atherosclerotic cardiovascular diseases (ASCVD) have
remained the major cause of morbidity and mortality
worldwide. The hallmark of ASCVD is aggregation of

activated platelets on a ruptured atherosclerotic plaque followed
by thrombus formation1. Hemostasis and platelet aggregation is
an evolutionary conserved process that is maintained by a delicate
balance between agonists like ADP and epinephrine and
antagonists like prostaglandins2. Prior studies have shown that
platelet aggregation in response to agonists is highly heritable
with heritability estimates between 40 and 60%3–5. High platelet
reactivity at baseline and after inhibition with aspirin is associated
with poor cardiovascular outcome6,7. Antiplatelet therapies are
standard-of-care for secondary prevention of the complications of
occlusions in coronary, cerebral, and peripheral arteries. Prior
genome- and exome-wide association studies have identified at
least 8 common variants for platelet aggregation in response to
different agonists8–11. With the exception of a few limited gene-
based scans9,12, no previous genome-wide studies have system-
atically evaluated the contribution of both common and rare
variants to heritability of agonist-induced platelet reactivity. Thus,
it is likely that significant missing heritability remains for platelet
function traits.

In this work leveraging the scientific resources of the NHLBI
Trans-Omics for Precision Medicine (TOPMed) Program, we
report the first association study of platelet aggregation in
response to variety of physiological stimuli using whole-genome
sequencing (WGS) data. We sought to 1) refine previously
identified GWAS loci, 2) identify novel loci that determine pla-
telet aggregation in response to different doses of ADP, epi-
nephrine and collagen, 3) examine the collective burden of coding
variants on platelet aggregation, and 4) evaluate the collective
burden of rare non-coding variants of megakaryocyte-specific
super-enhancer regions on platelet aggregation. Extension of
genetic findings using biobank resources as well as ex vivo cell-
based functional systems were also performed.

Results
Single-variant based tests for association. There were a total of
19 harmonized phenotypic measures of platelet aggregation
evaluated in this investigation (Supplementary Table 1). This
includes 9 phenotypes for adenosine diphosphate (ADP) as an
agonist, 9 for epinephrine, and 4 for collagen. Genome-wide
single variant tests for association were performed on ~28 million
variants in 3,125 European Americans (EA) and 730 African
Americans (AA) (Supplementary Table 2) from the Framingham
Heart Study (FHS), Older Order Amish Study (OOA), and the
Genetic Study of Atherosclerosis Risk (GeneSTAR). We identified
101 variants associated with platelet aggregation in response to
ADP, epinephrine, or collagen (P value < 5 × 10−8, Fig. 1, Sup-
plementary Fig. 1). Using iterative conditional analyses, genome-
wide significant variants were refined down to 16 independent
loci (Table 1). With the exception of two variants (rs12041331
and chr17:21960955) all loci were associated with platelet
aggregation in response to a single agonist (Fig. 1B), and most of
the identified loci were not present in the prior array-based
approaches8–10 (Table 1, Supplementary Figs. 2–4).

Replication of the single-variant results. Replication of dis-
covery findings was performed in up to 2,009 independent
samples from FHS, OOA, and GeneSTAR (Supplementary
Data 1), and extended into an independent cohort (the Caerphilly
Prospective Study [CaPS], N= 1183) for ADP and collagen-
induced platelet aggregation phenotypes8,13 (Supplementary
Table 4). Among the 7 previously reported loci10, 2 were repli-
cated in this investigation (PEAR1 and ADRA2A, Table 1).

Reduction in sample size, a low overlapping percentage (<75%) of
participants in 2 of the previously studied cohorts (FHS and
GeneSTAR European samples), addition of subjects (OOA and
GeneSTAR African Americans), and the difference between WGS
data and HapMap imputed dosage data (Supplementary
Table 5a) may explain, in part, the lack of association observed
with the other 5 previously identified loci. Meta-analysis, as
opposed to mega-analysis approaches, did not meaningfully
change the interpretation of these findings (Supplementary
Table 5a, b) comparing the current WGS results to prior studies.
Comparison of previous results with the current investigation for
the RGS18 variant is shown in Supplementary Table 5b; all other
newly-identified WGS variants from this study were not available
in the previous investigation.

Co-localization of the genetic loci with eQTLs in platelets.
Given that all 16 loci identified using single-variant approaches
are located in non-coding regions of the genome, we tested
for co-localization between these regions and eQTL data
available through RNA sequencing of platelets in 180 European
Americans from GeneSTAR (Supplementary Table 6). We found
that sentinel variants in the PEAR1 and RGS18 loci were eQTLs
for PEAR1 and RGS18, respectively. No co-localization was
noted for any of the remaining 14 loci. As noted in Fig. 2a, there
is likely only a single variant accounting for the PEAR1 GWAS
peak, in contrast to RGS18 where there are likely several causal
variants.

PheWAS in external Biobanks. An examination of the sentinel
variants reported in Table 1 was performed in the UK Biobank
and BioVU as presented in Supplementary Data 2. The minor
allele (A) of PEAR1 at rs12041331, which is known to be asso-
ciated with lesser platelet aggregation, PEAR1 RNA, and protein
expression14,15, was associated with increased odds of gastro-
intestinal bleeding in both EAs and AAs in the BioVU Biobank
PheWAS.

Functional follow up of the RGS18 locus. In the RGS18 region,
several variants were replicated using independent samples
(Supplementary Data 1), and additional evidence was also
observed for ADP and collagen aggregation phenotypes in the
CaPS study (Supplementary Table 4). Overlaying the associated
variants with platelet eQTLs and megakaryocytic epigenome
features, there are several potential candidate polymorphisms
(Supplementary Table 8). Consistent with our human
results, independent Rgs18−/− mouse studies suggest Rgs18
inhibits pre-agonist stimulated platelet reactivity, with knockouts
exhibiting exaggerated platelet reactivity to multiple agonist
pathways, decreased bleeding times, and increased arterial
occlusion16,17. This is attributed to a loss of inhibition of
multiple G-protein coupled receptor signaling pathways in
platelets18. The minor allele (C) of RGS18 at rs1175170, is asso-
ciated with arterial thrombosis/embolization in both EAs and
AAs in the BioVU BioBank (Supplementary Data 2). Allele-
specific and transcription-factor overexpression studies
suggest that rs12070423, which may disrupt a GATA1 target site,
and rs4495675, which may disrupt a NFE2 target site, both
reduce RGS18 expression (Fig. 2b, Supplementary Table 9, Sup-
plementary Figs. 4 and 5). These SNPs are in LD (minimum r2

0.614) with rs1175170 suggesting they may be functional variants
on the same haplotype that affect RGS18-mediated platelet
activation.

Genes identified through rare variant based approaches.
SKAT19 gene-based tests using a MAF threshold of 0.05 were
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conducted for deleterious variants mapping to 17,774 protein-
coding genes (Supplementary Table 10, Supplementary Fig. 6)
with significant findings after Bonferroni correction for SVEP1
(ADP-induced platelet aggregation, P value= 2.6 × 10−6), BCO1
(epinephrine-induced platelet aggregation, P= 8.9 × 10−7),
NELFA (collagen-induced platelet aggregation, P= 1.7 × 10−6)
and IDH3A (collagen-induced platelet aggregation, P
value= 2.6 × 10−6). Through leave-one-out analysis, we observed
that these associations were driven mainly by single or limited
sets of rare variants (Supplementary Fig. 7, Supplementary
Table 11). For example, the SVEP1 association with ADP-induced
platelet aggregation was solely driven by a nonsynonymous var-
iant (Gly229Arg) in the second exon (rs61751937, MAF 0.028, P
value= 5.8 × 10−6). This variant alters a highly conserved residue
located in the protein’s VWFa domain (Fig. 3A–C). The finding
remained significant in the replication cohort (P value= 0.004,
Supplementary Table 3) and CaPS (P value= 0.008, Supple-
mentary Table 4), both of which demonstrated an association
with increased ADP-induced platelet reactivity. Both variants are
modestly associated with CVD outcomes in the UK BioBank
(Supplementary Table 7).

The role of genetic variants in MK-specific super-enhancers. To
investigate the role of genetic variation on regulatory importance
in the context of super-enhancers, we aggregated rare non-coding
variants across a set of 1,065 published MK-specific super-
enhancers (Supplementary Fig. 8)20. We found rare non-coding
variants in a super-enhancer at the PEAR1 locus were sig-
nificantly associated with ADP- (P= 2.4 × 10−8), epinephrine- (P
value= 1.1 × 10−7) and collagen- (P value= 2.7 × 10−5) induced
platelet aggregation. We observed, in marked contrast to our
gene-based coding variant analyses, that the association signal in
the PEAR1 super-enhancer is driven by multiple rare variants in
the region (Supplementary Fig. 9).

Discussion
In this WGS study of platelet aggregation, we identify and
replicate several loci contributing to trait variation. A WGS
approach continues to validate the importance of the PEAR1
locus. Previous work demonstrated a single, common (~14%
MAF) intronic peak variant in PEAR1 (rs12041331) is asso-
ciated with platelet phenotypes using GWAS, regional
sequencing, and exonic approaches8,12,14,21. The minor allele of
rs12041331 is linked to decreased PEAR1 platelet protein
levels14,15, potentially through alteration of a methylation site
in MKs22. In addition, the role of this gene in platelet signaling
is supported by mechanistic studies23,24. Here, a sequencing-
based approach followed by co-localization with platelet eQTLs
reveal that results are consistent with a model that a single,
common causal variant explains the platelet reactivity
signal with respect to PEAR1. Similar to the case of PEAR1,
we recently identified a single strong regulatory SNP,
rs10886430 intronic to GRK5, that affects a GATA1 tran-
scription factor site and regulates platelet gene expression in a
highly cell-type specific manner, ultimately accounting for
~20% of variation in thrombin-platelet reactivity via PAR4
receptor regulation, and being causally related to both venous
and arterial disease risk11. These examples demonstrate how
single SNPs of large effect can be identified and ultimately
associated with CVD endpoints but require detailed studies of
agonist-specific phenotypes and cell-specific expression pat-
terns that will otherwise be missed.

The proteins RGS10 and RGS18 are highly expressed in pla-
telets and are important regulators of G protein signaling that
plays a role in multiple pathways of activation in platelets. Our
results indicate common RGS18 platelet regulatory alleles mod-
ulate human platelet function likely through GATA1 and/or
NFE2 interacting sites. Furthermore, our findings in independent
biobanks and ancestry groups that the allele that leads to
increased platelet reactivity is also associated with cardiovascular

Fig. 1 Genome-wide association study results for platelet aggregation and summary effects at 16 loci with P < 5 × 10−8. A Genome-wide association
study results for platelet aggregation in response to epinephrine, ADP and collagen in 3855 TOPMed participants. P values presented are a summary
across all individual phenotypes for the single agonist (i.e., the minimum P value for the variants from 8, 7 and 4 individual phenotypes for epinephrine,
ADP, and collagen, respectively described in Supplementary Table 1). P values are from a two-sided score test with no adjustment for multiple testing in
panels A and B. Loci passing genome-wide significance (P < 5 × 10−8) are marked by red dots. Locus names represent the nearest (for novel) or previously
annotated (for known) gene. The red line indicates a P value threshold of 5 × 10−8, corresponding to genome-wide significance. B Circle plot of the sentinel
variant at the 16 loci for each of the 19 phenotypes showing strength of GWAS signal (second from center ring) and magnitude/direction of effect
(center ring).
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and thrombotic outcomes including occlusions, cerebrovascular
disease, cardiac arrest, embolism and deep vein thrombosis sug-
gest that RGS18 may be a critical node for intervention in
platelets.

The WGS approach allowing for a rare-variant gene-based
analysis suggests that SVEP1 may have previously unappreciated
and multifactorial roles in contributing to CVD. Homozygous
Svep1−/− mice die from edema, and heterozygous mice, as well as
zebrafish, experience arterial and lymphatic vessel
malformations25–27. Consistent with previous investigations28,
RNAseq data in a subset of GeneSTAR participants do not
indicate expression of SVEP1 in platelets. We find that
rs61751937 is the strongest plasma protein QTL for SVEP1 (P
value= 5.2 × 10−64), reducing expression29, suggesting the effects
may be mediated through interactions of platelets with other cell
types in circulation. This conserved protein could potentially
affect platelet function and CVD through several mechanisms
including cell-cell adhesion, cell differentiation, and functions in
bone marrow niches30. Recent functional work demonstrates that

SVEP1 is expressed in plaques. Further experiments suggested
that deficiency of Svep1 affects Cxcl1 endothelial release and
promotes proinflammatory leukocyte recruitment to plaques31.
Given our assays are ex vivo assessments of platelet function in
PRP lacking endothelial, leukocyte and smooth muscle cells, this
suggests that alteration of SVEP1 levels or other related factors in
plasma may also have direct effects on platelets that may influ-
ence thrombus formation.

In conclusion, there is a large body of evidence supporting the
hypothesis that hyper-reactive platelets may predict future
thromboses in both healthy individuals6 and those who have
already experienced thrombosis32,33. Therefore, better under-
standing of the genetic determinants of heightened platelet
aggregation is likely critical in the early prediction of thrombosis
events as well as aiding in pharmacogenetic efforts pertaining to
antiplatelet therapy. By applying contemporary WGS strategies in
participants with extensive platelet reactivity phenotype data, we
show the potential for such approaches to identify genetic
determinants that may impact such traits.

Fig. 2 Co-localization of WGS signals in PEAR1 and RGS18 regions with effects on platelet gene expression and regulatory features and demonstration
of RGS18 allele-specific SNP effects on enhancer activity. Co-localization of WGS association signal and platelet eQTL signatures and allele-specific
experiments for RGS18 SNP enhancers. P values in panel A are two-sided score/linear model tests for GWAS/eQTLs, respectively, with no adjustment for
multiple testing. P values in Panel B are from a two-sided Welch test with no adjustment for multiple testing. A Top panels show co-localization between
PEAR1 eQTL and WGS association for platelet aggregation in response to Epi_low1 (see Supplementary Table 1) and bottom panels are between RGS18
eQTL with WGS association for platelet aggregation in response to Epi_low 5 (see Supplementary Table 1). In the left panels, the region of co-localization is
zoomed to the sentinel SNV ±25 kb, the Y axis shows the -log(P) of the GWAS association, the color of the dot represents the strength of the eQTL
evidence for the gene, and SNVs that were not included in eQTL analysis are shown in gray. The right panels show the scatter plot and correlation between
the ChiSquare statistic for the GWAS and eQTL signal for all SNVs present in both sets of data. B Allele-specific enhancer activity differences for
rs12070423 A or G alleles in HEK293 cells lentiviral transfected to overexpress GATA1 (top) and rs4495675 T or G alleles in HEK293 cells lentiviral
transfected to overexpress NFE2 (bottom). Each allele-specific result represents results of 12 experiments (12 biological replicates over 3 independent
replicates). Data presented represent mean values ± SEM.
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Methods
Description of study populations
GeneSTAR. The Genetic Study of Atherosclerosis Risk (GeneSTAR) is an ongoing,
prospective family-based study designed to explore environmental, phenotypic,
and genetic causes of premature cardiovascular disease. Participants were recruited
from European- and African-American families (n= 891) identified from pro-
bands who were hospitalized for a coronary disease event prior to 60 years of age in
any of 10 Baltimore, Maryland area hospitals. Apparently healthy siblings of the

probands, offspring of the siblings and probands, and the co-parents of the off-
spring were screened for traditional coronary disease and stroke risk factors as part
of a study of platelet function prior to and following a 2-week trial of 81 mg/day of
aspirin from 2003 to 20063,34. All measures described here were obtained prior to
the commencement of aspirin. Exclusion criteria included: 1) any coronary heart
disease or vascular thrombotic event, 2) any bleeding disorder or hemorrhagic
event (e.g., stroke or gastrointestinal bleed), 3) current use of any anticoagulants or
antiplatelet agents (i.e., warfarin, persantin, clopidogrel), 4) current use of chronic
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or acute nonsteroidal anti-inflammatory agents, including COX-2 inhibitors that
could not be discontinued, 5) recent active gastrointestinal disorder, 6) current
pharmacotherapy for a gastrointestinal disorder, 7) pregnancy or risk of pregnancy
during the trial, 8) recent menorrhagia, 9) known aspirin intolerance or allergic
side effects, 10) serious medical disorders, (e.g., autoimmune diseases, renal or
hepatic failure, cancer or HIV-AIDS), 11) current chronic or acute use of gluco-
corticosteroid therapy or any drug that may interfere with the measured outcomes,
12) serious psychiatric disorders, and, 13) inability to independently make a
decision to participate. Of the 3003 participants in the aspirin trial, 1786 were
selected for whole-genome sequencing (WGS) in the Trans-Omics for Precision
Medicine (TOPMed) Program based on 1) complete platelet function phenotyping
and 2) largest family size.

Framingham Heart Study. The Framingham Heart Study (FHS) is a longitudinal
family-based study that started to recruit participants of European ancestry in 1948
and now is on its third generation of participants. The Original cohort (first
generation) contains 5209 participants, the Offspring cohort (second generation),
began to recruit in 1971, contains 5124 participants, and the Third Generation
cohort, began to recruit in 2002, contains 4095 participants. In the present study,
we use data from the Offspring cohort10. For FHS, aspirin use was determined
based on arachidonic acid and review of platelet aggregation curves.

Old Order Amish (OOA). As part of the Amish Complex Disease Research Pro-
gram, a prospective cohort trial examining the relationship between genetic var-
iants and agonist-induced platelet function at baseline and in response to
clopidogrel and aspirin was performed. Characteristics of this cohort have been
described previously35. Briefly, Amish participants who were over age 20, generally
healthy, and agreed to discontinue the use of medications, supplements, and
vitamins for at least one week prior to study initiation were eligible for recruitment.
Medical and family histories, anthropometry, physical examinations, and blood
samples were obtained after an overnight fast. All measures described here were
obtained prior to clopidogrel or aspirin administration. Participants were excluded
from participation if any of the following criteria were met: 1) currently pregnant
or breastfeeding, 2) history of a bleeding disorder or major spontaneous bleed, 3)
severe hypertension (bp >160/95 mm Hg), 4) coexisting malignancy, 5) creatinine
>2.0 mg/dl, 6) AST or ALT >2 times the upper limit of normal, 7) Hct <32%, 8)
TSH <0.4 or >5.5 mIU/L, 9) platelet count >500,000/ul or <75,000/ul, 10) surgery
within the last 6 months, 11) allergy to aspirin or clopidogrel, or 12) unwilling or
unable to discontinue any medications that may interfere with the results of the
study outcomes.

Written informed consent was obtained from all participants, and each study
was approved by their local review board (GeneSTAR- Johns Hopkins Institutional
Review Board; FHS- Boston University Institutional Review Board; and OOA-
University of Maryland, Baltimore Institutional Review Board).

Platelet function tests and phenotype harmonization. Methods to assess ex vivo
platelet function have been described in detail previously8,10. In brief, blood
samples were obtained after an overnight fast into 3.2% (or 3.8% in FHS) citrated
vacutainer tubes. Platelet-rich and platelet-poor plasma (PRP and PPP, respec-
tively) were isolated by centrifugation (PRP, 180 × g for 15 min in GeneSTAR and
OOA, 160 × g for 5 min in FHS; PPP 2000 × g for 10 min in GeneSTAR and OOA,
2500 × g for 20 min for FHS). Light transmittance aggregometry was performed in
PRP using a PAP-4 (GeneSTAR and FHS) or a PAP-8E (OOA) aggregometer after
stimulation with ADP, epinephrine, or collagen using PPP as a referent. In Gen-
eSTAR, maximal aggregation (% aggregation) was recorded for periods of 5 min
after stimulation with ADP (2.0 and 10.0 μM, Chronolog Corp, Haverton, PA) or
epinephrine (2.0 and 10.0 μM, Chronolog Corp, Haverton, PA); and lag time to
initiation of aggregation was recorded after stimulation with equine
tendon–derived type I collagen (1, 2, 5 and 10 μg/ml; Chronolog Corp, Haverton,
PA). The same methods, agonists, and agonist concentrations were used in the
OOA cohort with the exception that only one concentration of epinephrine
(10 μM) was used and an extra concentration of ADP (5 μM) was tested. FHS
tested aggregation for periods of 4 min after administration of ADP (1.0, 3.0, 5.0,
and 10.0 μM) and 5min after administration of epinephrine (0.5, 1.0, 3.0, 5.0 and

10.0 μM); and, lag time to aggregation was assessed after stimulation with 190 μg/
ml calf skin–derived type I collagen (Bio/Data Corporation, Horsham, PA).
Threshold concentrations to ADP and epinephrine (EC50) were determined as the
minimal concentration of agonist required to produce >50% aggregation.

Using an adapted two stage procedure36, platelet aggregation traits were
adjusted for age, sex and aspirin-use using linear model, and the residuals from the
linear model were inverse normal transformed within each cohort. Given the
difference in agonist concentrations used between GeneSTAR/OOA and FHS
cohorts, predefined phenotypes were identified and harmonized across studies. For
ADP, epinephrine, and collagen independently, identical or closely matching
agonist concentrations, the transformed residuals were combined across studies for
analysis to test for association between genetic variants and low as well as high
concentrations of each agonists. In total, 19 traits were defined: three low-dose
ADP traits, four high-dose ADP traits, five low-dose epinephrine traits, three high-
dose epinephrine traits, two low-dose collagen traits, and two high-dose collagen
traits. Additional details regarding platelet phenotype harmonization are shown in
Supplementary Table 1.

TOPMed whole-genome sequencing. WGS was performed to an average depth of
38X using DNA isolated from blood, PCR-free library construction, and Illumina
HiSeq X technology. All samples used in this set of TOPMed genomes were from
Freeze 5b. Details for variant calling and quality control are described in a com-
panion paper by Taliun et al.37. Briefly, variant discovery and genotype calling was
performed jointly, across all the available TOPMed Freeze 5b studies, using the
GotCloud pipeline resulting in a single, multi-study, genotype call set. Sample-level
quality control was performed to check for pedigree errors, discrepancies between
self-reported and genetic sex, and concordance with prior genotyping array data.

Variant annotation. Variant annotation was performed using the WGSA738 and
dbNSFP39. Variants were annotated as exonic, splicing, ncRNA, UTR5, UTR3,
intronic, upstream, downstream, or intergenic. Exonic variants were further
annotated as frameshift insertion, frameshift deletion, frameshift block substitu-
tion, stopgain, stoploss, nonframeshift insertion, nonframeshift deletion, non-
frameshift block substitution, nonsynonymous variant, synonymous variant, or
unknown. Additional scores available included REVEL40, MCAP41 or CADD42

effect prediction algorithms.

Single variant tests for association. All analyses in this study were performed on
the Analysis Commons43. Variants with minor allele count (MAC) of at least 5 and
depth of coverage (DP) of at least 10 were selected for single variant analyses. The
GWAS were conducted using GENetic EStimation and Inference in Structured
samples (GENESIS)44,45 apps on Analysis Commons. GENESIS uses a linear mixed
model with a genetic relationship matrix (GRM) that is robust to population
structure and can account for known or cryptic relatedness. The combined
transformed residuals were used to conduct null model analysis adjusting for
cohort indicators using genesis_nullmodel app (https://github.com/
AnalysisCommons/). Single variant analysis and Sequence Kernel Association Test
(SKAT) gene-based analyses were performed using genesis_tests app.

We used p < 5 × 10−8 as our genome-wide significant threshold in single variant
analysis including conditional analysis for identifying independent signals.
Conditional analysis was conducted by selecting the genome-wide significant
variant with lowest p value on a chromosome for conditioning and performing
single variant analysis on the same chromosome. The procedure was repeated until
no genome-wide significant variant is identified in conditional analysis by
chromosome. Any variant surpassing genome-wide significance in conditional
analysis was considered to be an additional signal independent of conditioned
variant(s).

Gene-based coding variant tests for association. To improve the power to identify
rare variants in coding regions, we aggregated deleterious rare coding variants in
17,774 protein-coding genes and then tested for association with platelet aggrega-
tion phenotypes. To enrich for functional variants, only variants with a “deleterious”
consequence for its corresponding gene or genes (http://www.ensembl.org/info/
genome/variation/predicted_data.html#consequences), were included. For each

Fig. 3 Protein-coding variant effects in SVEP1 on ADP platelet activation, protein domains and cross-species conservation of 229G, 2702D and
surrounding sequence. Association of aggregated rare deleterious coding variants in SVEP1 and ADP-induced platelet aggregation. P values in panel A are
from two-sided score tests with no adjustment for multiple testing. A Using a leave-one-out approach, we identified a rare coding variant (rs61751937) that
explains most of the association. The first orange dot represents the overall gene-based test including the full set of 64 variants. Subsequent orange dots
represent the -log10(P) of the gene-based test when the specific labeled variant was left out, and blue bars represent minor allele frequency of specific
variant being left out. B Schematic protein structure of SVEP1. rs61751937 substitutes glycine for arginine at position 229. Another variant in SVEP1 has
been associated with coronary artery disease which substitutes glycine for aspartic acid at position 2702. C Using UniProt, a total of 98 orthologs were
identified for the largest human SVEP1 protein isoform and aligned. Alignments were visualized in MAFFT (v.7, https://mafft.cbrc.jp/alignment/server/,
Katoh et al. 2017)59 with ClustalW coloring. Both amino acids 229G and 2702D are highly conserved across diverse species, as well as their surrounding
protein domains. The sequence identifiers and genus and species are given in Supplementary Data 3.
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protein-coding gene, a set of rare coding variants (MAF < 0.05) was constructed,
which was composed of all stop-gain, stop-loss and frameshift variants as well as
exonic missense variants that fulfilled one of these criteria: 1) REVEL score >0.5, 2)
M_CAP score was “Deleterious”, or 3) CADD score >30. The protein coding variant
groupings were tested using SKAT with the beta-distribution parameters of 1 and 25
as proposed by Wu et al.19. Significance was evaluated for each platelet aggregation
trait after Bonferroni correction (0.05/17,744= 2.82 × 10−6).

Next we sought to determine which rare deleterious variants in each significant
gene were driving the association signal. We iterated through the variants and
removed one variant at a time (leave-one-out approach) and repeated the SKAT
analysis. If a variant made a large contribution to the original association signal,
one would expect the signal to significantly weaken with removal of the variant
from the gene set.

Super-enhancer based rare variant tests for association. We investigated rare non-
coding variants with putative regulatory potential by focusing on megakaryocyte-
specific super enhancers (MK SEs). The published MK SEs20 were called based on
regions identified as enhancers through genome segmentation across a set of six
histone modifications (H3K4me1, H3K4me3, H3K9me3, H3K27ac, H3K27me3
and H3K36me3) profiled in the BLUEPRINT project46, aggregating together ele-
ments within 12.5 kb and then ranking upon H3K27ac signal with the ROSE
algorithm47,48. We annotated rare (MAF < 0.05) non-coding variants located
within megakaryocyte DNase I Hypersensitivity Site (DHS) peaks generated by
BLUEPRINT and subset to those overlapping with MK SEs. We then applied
SKAT, aggregating these non-coding variants on the set of MK SEs (n= 1065) to
identify the association of these regulatory elements with platelet aggregation
phenotypes. Significance was evaluated for each platelet aggregation trait after
Bonferroni correction (0.05/1065= 4.69 × 10−5). When a gene was identified, we
conducted leave-one-out analysis to identify if a variant(s) contributed to the
observed signal.

Replication. Additional samples from each cohort which were not included in
TOPMed and therefore not included in the discovery analyses were used to
replicate the genome-wide significant variants identified in the discovery analyses.
In brief, genotype imputation and replication analyses were conducted by each
cohort, and then meta-analysis was used to combine cohort replication analysis
results. For signals identified in our gene-based tests, instead of conducting gene-
based replication analysis, we replicated the single rare variants that drove the
signals and that were identified from leave-one-out analyses, as not all selected rare
variants had good imputation quality and were available in each cohort49. Each
cohort independently, and separately by race for GeneSTAR, imputed the 22
autosomes using the TOPMed Freeze5b reference panel with Minimac450. We
implemented sample quality control procedures (excluding duplicate/reference
samples and gender mismatches) and genotyping quality control procedures
(excluding variants with call rate <95%, HWE p value <10−6, or MAF < 0.5%).
After lifting over to build 38, non-ambiguous strand flips were resolved and
ambiguous strand flips were removed. Post-imputation quality control was per-
formed considering 6 MAF bins and using an imputation R2 cutoff between 0.3
and 0.8, incrementing by 0.1 such that the mean R2 exceeded 0.8 for each MAF bin.
A maximum of 2009 samples were available for replication analyses: 395 OOA,
1289 FHS, 246 GS-EA, and 100 GS-AA.

GS-EA, GS-AA and OOA used the same statistical methods as the discovery
analysis for the replication analysis, again using the Analysis Commons. In brief,
the platelet traits were adjusted for age, sex and aspirin-use using a linear model
separately in each cohort (OOA, GS-EA, GS-AA), and the residuals from these
models were then inverse normal transformed within each cohort. Using GENESIS,
null models were fitted within each cohort using a linear mixed model with a GRM
and no covariates. Using these null models, single variant analyses were performed
using GENESIS, again within each cohort. FHS used a linear mixed effects model
with a relationship coefficient matrix that accounts for familial correlation
implemented in the coxme51 R package to conduct replication analysis, where
linear model adjusting for age, sex and aspirin use was used to obtain residuals, the
residuals were inverse normalized and then used for testing genetic association.
Replication meta-analyses were performed using the sample size weighted
approach implemented in METAL52. An imputation quality filter of R2 ≥ 0.7 was
applied prior to meta-analysis, that is, at a particular variant, any cohorts with R2 <
0.7 did not contribute to the variant’s meta-analysis. Replication p-values were
reported based on a one-sided test since the same effect direction was the expected
result to reject the null hypothesis.

Extension of results to an independent GWAS cohort. The Caerphilly Prospective
Study (CaPS) participants were relatively healthy, middle aged males at recruitment
and their ages at time of blood draw (Exam 2) ranged from 47 to 66. The extent of
platelet aggregation to three agonists was measured in PRP adjusted to 300,000
platelets/µl with autologous PPP53. Agonists included collagen (42.7 µg/ml), ADP
(0.725 µM/l), and full-length thrombin (0.056 units/ml). The maximal optical
density increase due to platelet aggregation was measured and expressed as a
proportion of the difference in optimal density between PRP and PPP. Genotyping
was performed with the Affymetrix UK BioBank array using the Affymetrix Axiom
Analysis program. Following sample and genotyping quality control, imputation

on 22 autosomes was performed using the HRC 1.1 reference panel, resulting in
~7.6 million variants with MAF > 0.01 and R2 > 0.4. GWAS was performed with
the Efficient Mixed-Model Association eXpedited (EMMAX) package. For each
trait, a linear model was constructed adjusting for age and medication use
(anticoagulant, antiplatelet, antilipid, hypoglycemics) and single variant analyses
were performed on transformed platelet reactivity values. Maximum sample sizes
and phenotype transformations were as follows: ADP (n= 1177, natural log),
thrombin (n= 1183, square root), and collagen (n= 811, cube root). Although the
agonists differed in some cases in dose or type from the discovery efforts, we had
the prior hypothesis that platelet-reactivity increasing alleles for one agonist are
likely to be reactivity increasing for other agonists/doses. Note that in CaPS col-
lagen maximal aggregation was measured, and collagen lag time unavailable, thus,
the expected effect direction would be opposite to our discovery analyses (as
observed for PEAR1 rs12041331 in Supplementary Table 4 versus collagen lag time
discovery results in Supplementary Data 1). Association extension results in CaPS
are reported with beta, standard-error, and one-sided p values relative to the
hypothesized direction.

Co-localization of expression quantitative trait loci (eQTL) signatures from platelets
in GeneSTAR European Americans. A subset of 180 TOPMed GeneSTAR European
Americans samples also had RNA-seq data generated using platelets. eQTL analysis
was performed as previously described54. Here, formal Bayesian co-localization was
performed using the coloc55–57 package in R for each of the 16 independent loci
(Table 1) against all gene transcripts where there was at least one SNP with an
eQTL p value p < 0.003125 (0.05/16) for the specific gene within 20 KB of the peak
variant. This yielded 10 locus-gene pairs (Supplementary Table 4). coloc tests five
mutually exclusive hypotheses: H0, no GWAS and no eQTL association; H1,
association with GWAS, but no eQTL; H2, association with eQTL, but no GWAS;
H3, eQTL and GWAS association, but with two independent causal variants; and
H4, shared causal variants for both eQTL and GWAS. The main interest is to assess
whether there is a shared causal variant between eQTL and GWAS (i.e., H4). The
package provides five posterior probabilities for these hypotheses (PP0, PP1, PP2,
PP3, and PP4) and PP4 of >75% is considered evidence of a colocalization of
GWAS and eQTL. Posterior probabilities for individual variants were evaluated
once PP4 was met.

Allele-specific and transcription-factor enriched enhancer assays
Cell culture. K562 is a lymphoblastoid human erythroleukemia cell line derived
from a female donor. It is a suspension cell line. K562 cells were cultured and
maintained in RPMI 1640 media supplemented with 10% FBS (Sigma-Aldrich),
Pen/Strep and L-Gln. Cultures were maintained in a humidified environment at
37 °C with 5% CO2. K562 cells were passaged every 24–48 h. HEK293 cells were
cultured and maintained at low passage in DMEM media supplemented with 5%
FBS (Sigma-Aldrich). Cultures were maintained in a humidified environment at
37 °C with 5% CO2.

Lentivirus production. For Lentivirus production following vectors were used:
pInducer-21 lentiviral vector (Addgene), pMD2.G envelope plasmid (Addgene),
psPAX2 packaging plasmid (Addgene). 293T-17 cells (ATCC) were cultured and
maintained at low passage in DMEM media supplemented with 5% FBS (Sigma-
Aldrich). Cultures were maintained in a humidified environment at 37 °C with 5%
CO2. 293T-17 cells were passaged every 24–48 h. Lentiviral plasmids possessing
open reading frames of GFP (Empty), POLR2A, NRF1, CTCF, FOSL1, GATA1,
GATA2, CEBPB, and NFE2 were cloned into pInducer-21 lentiviral vector. For
lentivirus production, 293T-17 cells (ATCC) were transfected with third generation
packaging plasmids pMD2.G and psPAX2 (Addgene) and lentiviral plasmids
POLR2A, NRF1, CTCF, FOSL1, GATA1, GATA2, CEBPB, and NFE2. Viruses
were harvested 48 h post transfections and concentrated by ultracentrifugation at
71,286 × g for 2 h at 4 °C. Viruses were titrated by serial dilution on 293 T cells
using GFP as an indicator.

RNA extraction, reverse transcription, and RT-qPCR. RNA extraction from var-
iously transduced HEK293 and K562 cells was performed using an RNAeasy kit
(Qiagen). Reverse transcription was performed using Superscript III (Invitrogen),
using Oligo (dT) 15 primer. Quantitative PCRs were performed in triplicate with
Taqman primer prober assays, shown in Methods Table 1 and CFX96 real-time
PCR detection system (Bio-rad). Target transcript abundance was calculated
relative to ACTB (reference gene) using the 2-ΔΔCT method. Gene specific primer
pairs are present in methods section Oligonucleotides.

Enhancer function reporter assay. The following vectors were used in this protocol:
pGL3 luciferase reporter (Promega), pGL4.74[hRluc/TK] control vector (Promega).
~200–300 base pair non-coding regions of RGS18, ADRA2A and PEAR1 and the
associated alleles surrounding the various SNP variants were cloned into the pGL3
luciferase vector. We created two modified constructs to assess functionality of the
various loci: wild-type loci carrying no SNP and knock-in of the various SNPs into
the respective loci. The constructs were generated via Vectorbuilder. Constructs
were sequenced to confirm the expected genotype and to ensure no off-target
mutations were introduced. Dual luciferase reporter assays were performed as
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described previously with minor modifications11,58. Briefly, GFP, POLR2A, NRF1,
CTCF, FOSL1, GATA1, GATA2, CEBPB, or NFE2 overexpressing HEK293 cells or
K562 cells were co-transfected with one of the two pGL3 luciferase vectors
described above as well pGL3 control according to the manufacturer’s instructions.
Firefly and Renilla luciferase reporter activity of cell extracts were measured using
the Dual-Glo Luciferase Assay System (Promega) on a microplate reader according
to the manufacturer’s instructions. Each treatment was performed in duplicate and
the experiment was repeated three times. Assay primer information is given in
Supplementary Table 12.

Phenome-wide association study (PheWAS). The 16 genome-wide significant
variants identified from WGS in our discovery cohort (Table 1) as well as sig-
nificant variants identified in gene-based tests, were examined against clinical
phenotypes in the UKBB and BioVU cohorts where available. We queried UKBB
GWAS results using SAIGE calculated summary statistics (http://www.nealelab.is/
uk-biobank/faq). The BioVU repository contains >250,000 DNA samples obtained
from discarded blood samples of consented patients at Vanderbilt University
Medical Center (Nashville, TN). De-identified DNA samples in the BioVU repo-
sitory are linked to 1543 clinical diagnostic codes. Of these 1543 clinical diagnostic
codes, we identified 71 diagnoses for which platelet function could be in the
pathophysiologic pathway to disease expression. Numerous overlapping disease
processes were represented among these 71 codes, which we further categorized
into the following 6 phenotypes: arterial thrombosis (30 codes), venous thrombosis
(3 codes), hypercoagulable state (2 codes), platelet (5 codes), bleeding (26 codes),
and anti-thrombotic medication usage (5 codes). The phecodes were matched
between UKBB and BioVU for corresponding allelic results.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
TOPMed WGS variant calls are available for all samples through the Database of
Genotypes and Phenotypes (dbGaP) under accession number phs001218 for GeneSTAR,
phs000956 and phs000391 for OOA and phs000974 for Framingham. Phenotype data for
GeneSTAR, OOA and Framingham are also available through this mechanism. Summary
statistics are being deposited in the TOPMed GSR (Genomic Summary Results) site.
eQTL analysis results used in the co-localization analysis are hosted on a website at:
http://www.biostat.jhsph.edu/~kkammers/GeneSTAR/.
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