37 research outputs found

    New polymorphisms associated with response to anti-TNF drugs in patients with moderate-to-severe plaque psoriasis

    Full text link
    Anti-tumor necrosis factor (anti-TNF) drugs are effective against psoriasis, although 20–30% of patients are nonresponders. Few pharmacogenomic studies have been performed to predict the response to anti-TNF drugs in psoriasis. We studied 173 polymorphisms to establish an association with the response to anti-TNF drugs in patients with moderate-to-severe plaque psoriasis (N=144). We evaluated the response using PASI75 at 3, 6 and 12 months. The results of the multivariate analysis showed an association between polymorphisms in PGLYR4, ZNF816A, CTNNA2, IL12B, MAP3K1 and HLA-C genes and the response at 3 months. Besides, the results for polymorphisms in IL12B and MAP3K1 were replicated at 6 months. We also obtained significant results for IL12B polymorphism at 1 year. Moreover, polymorphisms in FCGR2A, HTR2A and CDKAL1 were significant at 6 months. This is the first study to show an association with these polymorphisms. However, these biomarkers should be validated in large-scale studies before implementation in clinical practiceThis study was supported by Instituto de Salud Carlos III (FIS PI10/01740), Fundación Teófilo Hernando, and AbbVie. RPP has a grant from Universidad Autónoma de Madrid (FPI program 2013

    Challenges in microbial ecology: building predictive understanding of community function and dynamics.

    Get PDF
    The importance of microbial communities (MCs) cannot be overstated. MCs underpin the biogeochemical cycles of the earth's soil, oceans and the atmosphere, and perform ecosystem functions that impact plants, animals and humans. Yet our ability to predict and manage the function of these highly complex, dynamically changing communities is limited. Building predictive models that link MC composition to function is a key emerging challenge in microbial ecology. Here, we argue that addressing this challenge requires close coordination of experimental data collection and method development with mathematical model building. We discuss specific examples where model-experiment integration has already resulted in important insights into MC function and structure. We also highlight key research questions that still demand better integration of experiments and models. We argue that such integration is needed to achieve significant progress in our understanding of MC dynamics and function, and we make specific practical suggestions as to how this could be achieved

    Looking for Options to Sustainably Fixate Nitrogen. Are Molecular Metal Oxides Catalysts a Viable Avenue?

    Get PDF
    Fast and reliable industrial production of ammonia (NH3) is fundamentally sustaining modern society. Since the early 20th Century, NH3 has been synthesized via the Haber–Bosch process, running at conditions of around 350–500°C and 100–200 times atmospheric pressure (15–20 MPa). Industrial ammonia production is currently the most energy-demanding chemical process worldwide and contributes up to 3% to the global carbon dioxide emissions. Therefore, the development of more energy-efficient pathways for ammonia production is an attractive proposition. Over the past 20 years, scientists have imagined the possibility of developing a milder synthesis of ammonia by mimicking the nitrogenase enzyme, which fixes nitrogen from the air at ambient temperatures and pressures to feed leguminous plants. To do this, we propose the use of highly reconfigurable molecular metal oxides or polyoxometalates (POMs). Our proposal is an informed design of the polyoxometalate after exploring the catabolic pathways that cyanobacteria use to fix N2 in nature, which are a different route than the one followed by the Haber–Bosch process. Meanwhile, the industrial process is a “brute force” system towards breaking the triple bond N-N, needing high pressure and high temperature to increase the rate of reaction, nature first links the protons to the N2 to later easier breaking of the triple bond at environmental temperature and pressure. Computational chemistry data on the stability of different polyoxometalates will guide us to decide the best design for a catalyst. Testing different functionalized molecular metal oxides as ammonia catalysts laboratory conditions will allow for a sustainable reactor design of small-scale production.BT/Environmental Biotechnolog

    Multiscale models driving hypothesis and theory-based research in microbial ecology

    No full text
    Hypothesis and theory-based studies in microbial ecology have been neglected in favour of those that are descriptive and aim for data-gathering of uncultured microbial species. This tendency limits our capacity to create new mechanistic explanations of microbial community dynamics, hampering the improvement of current environmental biotechnologies. We propose that a multiscale modelling bottom-up approach (piecing together sub-systems to give rise to more complex systems) can be used as a framework to generate mechanistic hypotheses and theories (in-silico bottom-up methodology). To accomplish this, formal comprehension of the mathematical model design is required together with a systematic procedure for the application of the in-silico bottom-up methodology. Ruling out the belief that experimentation before modelling is indispensable, we propose that mathematical modelling can be used as a tool to direct experimentation by validating theoretical principles of microbial ecology. Our goal is to develop methodologies that effectively integrate experimentation and modelling efforts to achieve superior levels of predictive capacity. BT/Environmental Biotechnolog
    corecore