146 research outputs found

    Wongi mi bardup (doing it our way)

    Get PDF
    The Birthing on Noongar Boodjar project investigated the cultural birthing practices of Aboriginal women living on country (Noongar Boodjar) in an urbanised environment; and their experiences of interactions with maternal health care providers (especially midwives). The evidence from the five year study identified changes required in health systems to adequately support Aboriginal women and their families during the significant cultural and life event of childbearing. This paper sets out the methodological and theoretical considerations which framed how the Birthing on Noongar Boodjar project was conducted by the Aboriginal and non-Aboriginal investigators. We provide a brief project background before describing the Indigenous research methodologies and practices crucial to exploring the research questions, collecting data in culturally secure ways and using cultural lenses to analyze and interpret the data. The study design and results are reported in other publications

    GD2-targeting CAR-T cells enhanced by transgenic IL-15 expression are an effective and clinically feasible therapy for glioblastoma

    Get PDF
    Background: Aggressive primary brain tumors such as glioblastoma are uniquely challenging to treat. The intracranial location poses barriers to therapy, and the potential for severe toxicity. Effective treatments for primary brain tumors are limited, and 5-year survival rates remain poor. Immune checkpoint inhibitor therapy has transformed treatment of some other cancers but has yet to significantly benefit patients with glioblastoma. Early phase trials of chimeric antigen receptor (CAR) T-cell therapy in patients with glioblastoma have demonstrated that this approach is safe and feasible, but with limited evidence of its effectiveness. The choices of appropriate target antigens for CAR-T-cell therapy also remain limited. Methods We profiled an extensive biobank of patients’ biopsy tissues and patient-derived early passage glioma neural stem cell lines for GD2 expression using immunomicroscopy and flow cytometry. We then employed an approved clinical manufacturing process to make CAR- T cells from patients with peripheral blood of glioblastoma and diffuse midline glioma and characterized their phenotype and function in vitro. Finally, we tested intravenously administered CAR-T cells in an aggressive intracranial xenograft model of glioblastoma and used multicolor flow cytometry, multicolor whole-tissue immunofluorescence and next-generation RNA sequencing to uncover markers associated with effective tumor control. Results: Here we show that the tumor-associated antigen GD2 is highly and consistently expressed in primary glioblastoma tissue removed at surgery. Moreover, despite patients with glioblastoma having perturbations in their immune system, highly functional GD2-specific CAR-T cells can be produced from their peripheral T cells using an approved clinical manufacturing process. Finally, after intravenous administration, GD2-CAR-T cells effectively infiltrated the brain and controlled tumor growth in an aggressive orthotopic xenograft model of glioblastoma. Tumor control was further improved using CAR-T cells manufactured with a clinical retroviral vector encoding an interleukin-15 transgene alongside the GD2-specific CAR. These CAR-T cells achieved a striking 50% complete response rate by bioluminescence imaging in established intracranial tumors. Conclusions: Targeting GD2 using a clinically deployed CAR-T-cell therapy has a sound scientific and clinical rationale as a treatment for glioblastoma and other aggressive primary brain tumors.Tessa Gargett, Lisa M Ebert, Nga T H Truong, Paris M Kollis, Kristyna Sedivakova, Wenbo Yu, Erica C F Yeo, Nicole L Wittwer, Briony L Gliddon, Melinda N Tea, Rebecca Ormsby, Santosh Poonnoose, Jake Nowicki, Orazio Vittorio, David S Ziegler, Stuart M Pitson, Michael P Brow

    Identification of reduced host transcriptomic signatures for tuberculosis disease and digital PCR-based validation and quantification

    Get PDF
    Recently, host whole blood gene expression signatures have been identified for diagnosis of tuberculosis (TB). Absolute quantification of the concentrations of signature transcripts in blood have not been reported, but would facilitate diagnostic test development. To identify minimal transcript signatures, we applied a transcript selection procedure to microarray data from African adults comprising 536 patients with TB, other diseases (OD) and latent TB (LTBI), divided into training and test sets. Signatures were further investigated using reverse transcriptase (RT)-digital PCR (dPCR). A four-transcript signature (GBP6, TMCC1, PRDM1, and ARG1) measured using RT-dPCR distinguished TB patients from those with OD (area under the curve (AUC) 93.8% (CI95% 82.2-100%). A three-transcript signature (FCGR1A, ZNF296, and C1QB) differentiated TB from LTBI (AUC 97.3%, CI95%: 93.3-100%), regardless of HIV. These signatures have been validated across platforms and across samples offering strong, quantitative support for their use as diagnostic biomarkers for TB.Immunogenetics and cellular immunology of bacterial infectious disease

    Identification of Reduced Host Transcriptomic Signatures for Tuberculosis Disease and Digital PCR-Based Validation and Quantification.

    Get PDF
    Recently, host whole blood gene expression signatures have been identified for diagnosis of tuberculosis (TB). Absolute quantification of the concentrations of signature transcripts in blood have not been reported, but would facilitate diagnostic test development. To identify minimal transcript signatures, we applied a transcript selection procedure to microarray data from African adults comprising 536 patients with TB, other diseases (OD) and latent TB (LTBI), divided into training and test sets. Signatures were further investigated using reverse transcriptase (RT)-digital PCR (dPCR). A four-transcript signature (GBP6, TMCC1, PRDM1, and ARG1) measured using RT-dPCR distinguished TB patients from those with OD (area under the curve (AUC) 93.8% (CI95% 82.2-100%). A three-transcript signature (FCGR1A, ZNF296, and C1QB) differentiated TB from LTBI (AUC 97.3%, CI95%: 93.3-100%), regardless of HIV. These signatures have been validated across platforms and across samples offering strong, quantitative support for their use as diagnostic biomarkers for TB

    Types of mankind or Ethological researches : based upon the ancient monuments, paintings, sculptures, and crania of races : and upon their natural, geographical, philological and biblical history

    Get PDF
    Copia digital. Madrid : Ministerio de Educación, Cultura y Deporte. Subdirección General de Coordinación Bibliotecaria, 201

    Identification of a mutation causing mucopolysaccharidosis type IIIA in New Zealand Huntaway dogs

    No full text
    Mucopolysaccharidosis type IIIA (MPS IIIA) is an autosomal recessive disease that occurs due to a deficiency of heparan sulfate sulfamidase (SGSH). The deficiency of SGSH results in the lysosomal accumulation and urinary excretion of the glycosaminoglycan heparan sulfate. The clinical severity of MPS IIIA is predominantly characterized by severe central nervous system degeneration. Naturally occurring MPS IIIA has recently been described in New Zealand Huntaway dogs, with similar disease progression and biochemical characteristics observed in severely affected MPS IIIA patients. Here, we identify the disease-causing mutation in the MPS IIIA Huntaway dog as 708-709insC. The frequency of the 708-709insC mutation in a sample group of 203 New Zealand Huntaway dogs was determined to be 3.8%. The identification of the 708-709insC mutation will permit the identification of heterozygous carriers as an initial step toward establishing a breeding colony of MPS IIIA dogs for the study of various therapeutic strategies targeted to the central nervous system
    • …
    corecore