1,137 research outputs found
Effects of three-nucleon forces and two-body currents on Gamow-Teller strengths
We optimize chiral interactions at next-to-next-to leading order to
observables in two- and three-nucleon systems, and compute Gamow-Teller
transitions in carbon-14, oxygen-22 and oxygen-24 using consistent two-body
currents. We compute spectra of the daughter nuclei nitrogen-14, fluorine-22
and fluorine-24 via an isospin-breaking coupled-cluster technique, with several
predictions. The two-body currents reduce the Ikeda sum rule, corresponding to
a quenching factor q^2 ~ 0.84-0.92 of the axial-vector coupling. The half life
of carbon-14 depends on the energy of the first excited 1+ state, the
three-nucleon force, and the two-body current
Iterative Temporal Motion Planning for Hybrid Systems in Partially Unknown Environments
This paper considers the problem of motion planning for a
hybrid robotic system with complex and nonlinear dynamics
in a partially unknown environment given a temporal logic
specification. We employ a multi-layered synergistic framework
that can deal with general robot dynamics and combine
it with an iterative planning strategy. Our work allows us
to deal with the unknown environmental restrictions only
when they are discovered and without the need to repeat
the computation that is related to the temporal logic specification.
In addition, we define a metric for satisfaction of
a specification. We use this metric to plan a trajectory that
satisfies the specification as closely as possible in cases in
which the discovered constraint in the environment renders
the specification unsatisfiable. We demonstrate the efficacy
of our framework on a simulation of a hybrid second-order
car-like robot moving in an office environment with unknown
obstacles. The results show that our framework is successful
in generating a trajectory whose satisfaction measure of the
specification is optimal. They also show that, when new obstacles
are discovered, the reinitialization of our framework
is computationally inexpensive
Correlation between Charge Inhomogeneities and Structure in Graphene and Other Electronic Crystalline Membranes
Only one atom thick and not inclined to lattice defects, graphene represents
the ultimate crystalline membrane. However, its structure reveals unique
features not found in other crystalline membranes, in particular the existence
of ripples with wavelength of 100-300 Angstroms. Here, I trace the origin of
this difference to the free electrons in the membrane. The deformation energy
of the lattice creates a coupling between charge fluctuations and the
structure, resulting in ripples on the membrane, correlated with charge
inhomogeneities. In graphene this mechanism reproduces the experimental result
for both charge puddles and ripples.Comment: Accepted for publication in PRB as Rapid Communicatio
Solar fusion cross sections II: the pp chain and CNO cycles
We summarize and critically evaluate the available data on nuclear fusion
cross sections important to energy generation in the Sun and other
hydrogen-burning stars and to solar neutrino production. Recommended values and
uncertainties are provided for key cross sections, and a recommended spectrum
is given for 8B solar neutrinos. We also discuss opportunities for further
increasing the precision of key rates, including new facilities, new
experimental techniques, and improvements in theory. This review, which
summarizes the conclusions of a workshop held at the Institute for Nuclear
Theory, Seattle, in January 2009, is intended as a 10-year update and
supplement to Reviews of Modern Physics 70 (1998) 1265.Comment: 54 pages, 20 figures, version to be published in Reviews of Modern
Physics; various typos corrected and several updates mad
Study of cosolvent-induced α-chymotrypsin fibrillogenesis: Does protein surface hydrophobicity trigger early stages of aggregation reaction?
The misfolding of specific proteins is often associated with their assembly into fibrillar aggregates, commonly termed amyloid fibrils. Despite the many efforts expended to characterize amyloid formation in vitro, there is no deep knowledge about the environment (in which aggregation occurs) as well as mechanism of this type of protein aggregation. Alpha-chymotrypsin was recently driven toward amyloid aggregation by the addition of intermediate concentrations of trifluoroethanol. In the present study, approaches such as turbidimetric, thermodynamic, intrinsic fluorescence and quenching studies as well as chemical modification have been successfully used to elucidate the underlying role of hydrophobic interactions (involved in early stages of amyloid formation) in α-chymotrypsin-based experimental system. © 2009 Springer Science+Business Media, LLC
Theory of the spontaneous buckling of doped graphene
Graphene is a realization of an esoteric class of materials -- electronic
crystalline membranes. We study the interplay between the free electrons and
the two-dimensional crystal, and find that it induces a substantial effect on
the elastic structure of the membrane. For the hole-doped membrane, in
particular, we predict a spontaneous buckling. In addition, attenuation of
elastic waves is expected, due to the effect of corrugations on the bulk
modulus. These discoveries have a considerable magnitude in graphene, affecting
both its mesoscopic structure, and its electrical resistivity, which has an
inherent asymmetry between hole- and electron-doped graphene.Comment: Accepted for publication in PR
Patient-derived small intestinal myofibroblasts direct perfused, physiologically responsive capillary development in a microfluidic gut-on-a-chip model
A critical role for the self-assembly of Amyloid-β1-42 in neurodegeneration
Amyloid β1-42 (Aβ1-42) plays a central role in Alzheimer’s disease. The link between structure, assembly and neuronal toxicity of this peptide is of major current interest but still poorly defined. Here, we explored this relationship by rationally designing a variant form of Aβ1-42 (vAβ1-42) differing in only two amino acids. Unlike Aβ1-42, we found that the variant does not self-assemble, nor is it toxic to neuronal cells. Moreover, while Aβ1-42 oligomers impact on synaptic function, vAβ1-42 does not. In a living animal model system we demonstrate that only Aβ1-42 leads to memory deficits. Our findings underline a key role for peptide sequence in the ability to assemble and form toxic structures. Furthermore, our non-toxic variant satisfies an unmet demand for a closely related control peptide for Aβ1-42 cellular studies of disease pathology, offering a new opportunity to decipher the mechanisms that accompany Aβ1-42-induced toxicity leading to neurodegeneration
Recommended from our members
Erratum: Consortium biology in immunology: The perspective from the Immunological Genome Project
Ab initio alpha-alpha scattering
Processes involving alpha particles and alpha-like nuclei comprise a major
part of stellar nucleosynthesis and hypothesized mechanisms for thermonuclear
supernovae. In an effort towards understanding alpha processes from first
principles, we describe in this letter the first ab initio calculation of
alpha-alpha scattering. We use lattice effective field theory to describe the
low-energy interactions of nucleons and apply a technique called the adiabatic
projection method to reduce the eight-body system to an effective two-cluster
system. We find good agreement between lattice results and experimental phase
shifts for S-wave and D-wave scattering. The computational scaling with
particle number suggests that alpha processes involving heavier nuclei are also
within reach in the near future.Comment: 6 pages, 6 figure
- …
