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ABSTRACT
This paper considers the problem of motion planning for a
hybrid robotic system with complex and nonlinear dynamics
in a partially unknown environment given a temporal logic
specification. We employ a multi-layered synergistic frame-
work that can deal with general robot dynamics and combine
it with an iterative planning strategy. Our work allows us
to deal with the unknown environmental restrictions only
when they are discovered and without the need to repeat
the computation that is related to the temporal logic spec-
ification. In addition, we define a metric for satisfaction of
a specification. We use this metric to plan a trajectory that
satisfies the specification as closely as possible in cases in
which the discovered constraint in the environment renders
the specification unsatisfiable. We demonstrate the efficacy
of our framework on a simulation of a hybrid second-order
car-like robot moving in an office environment with unknown
obstacles. The results show that our framework is successful
in generating a trajectory whose satisfaction measure of the
specification is optimal. They also show that, when new ob-
stacles are discovered, the reinitialization of our framework
is computationally inexpensive.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics

General Terms
Algorithms, Verification

Keywords
Motion Planning, Temporal Logic, Formal Synthesis

1. INTRODUCTION
In“classical”motion planning, robots with dynamics along

with basic point-to-point robotic tasks are considered. These
tasks are specified as, “go from A to B and avoid obstacles.”
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To allow planning for more complex robots with compli-
cated missions, various computational frameworks for plan-
ning with temporal logic specifications have been developed
in the recent years (e.g., [10, 16, 17, 27, 32]). The increased
expressivity as the result of the employment of temporal log-
ics accommodates complex tasks that, for instance, require
reaching one of a set of goals (“go to A or B”), visiting tar-
gets sequentially (“go to A, B, and C in this order”), and
temporal conditions in reachability of targets (“first go to
A or B and then eventually to C. If D is ever visited, then
avoid B”). In this paper, we focus on planning with tem-
poral goals for systems with general dynamics that can be
realistically modeled as hybrid systems.

Most of the existing works in motion planning with tempo-
ral logic specifications consider static workspaces with full
knowledge of their maps. Such assumptions, however, do
not usually hold in real-world scenarios. For instance, a mo-
bile robot in a warehouse setting may not be aware of a
fallen box from a shelf that has blocked an aisle, or a mo-
bile robot in an office environment may not know about the
states of the office doors before its deployment. In such sce-
narios, it is reasonable to assume some information about
the environment (e.g., the floor plan of the warehouse or the
office building), but the motion-planning framework needs
to have the capability of dealing with unforeseen obstacles
in the environment. In fact, with complex specifications, it
is imperative to consider the cases where the environment
changes.

Recent works in synthesis-based approaches have begun
to consider such cases (e.g., [25, 29]). In these works, syn-
thesis involves the creation of a control strategy that can
account for every possible environmental uncertainty. How-
ever, for the cases in which the number of environmental
uncertainties is large, the problem becomes too complex. In
these cases, it is advantageous to adopt an iterative tem-
poral planning approach, in which online replanning is per-
formed when unexpected environmental features are discov-
ered. The difference between the above two approaches is
discussed further in Section 1.1. The iterative planning ap-
proach poses the extra question of what to do in case the
specification cannot be met due to newly discovered environ-
mental restrictions. This gives rise to the need for a formal
definition for a measure of satisfaction of a specification, a
topic which is partially addressed in this paper.

Consider, for instance, a janitor robot in the office build-
ing whose schematic representation is shown in Figure 1.
The office environment consists of a lobby, which includes
an obstacle shown as a black rectangle, and five rooms each
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Figure 1: A schematic representation of an office
building consisting of a lobby and five rooms. The
lobby includes a black rectangular obstacle (center
of figure), and each room has a door. The doors
of three rooms are open and two are closed. The
robot is shown as a blue rectangle in the lobby. The
properties of interest in this environment are repre-
sented by the red, orange, purple, yellow, and green
rectangles.

with a door. As the robot moves in the environment, its
dynamics are subject to a set of restrictions associated with
the features in the rooms (e.g., floor material and existence
of sensitive objects). The properties of interest in this of-
fice environment are shown as orange, purple, red, green,
and yellow rectangles. They represent office objects such as
plants, a desk, a coffee maker, a blackboard, and a supply
cabinet in the rooms. An example of a motion specification
is as follows.

“Visit the red region (to water the plants), go to the
green region (to turn off the coffee maker), go to the
yellow region (to clean the blackboard), and go to the
purple region (to pick up the duster from supply cab-
inet) before visiting the orange region (to dust the
desk). Do these tasks in any order and always avoid
obstacles.”

In this example, the robot initially has no knowledge of
the obstacle in the lobby and the state of the office doors.
It discovers them as it moves in the environment. Note that
(for the instance captured in this figure) the robot will not
be able to visit the red and green regions since the doors of
their rooms are closed. Thus, there are parts of the above
specification that cannot be satisfied. Nevertheless, for such
tasks, we should allow the robot to continue with the mission
even if it fails to satisfy parts of the specification due to
unknown environmental constraints.

In this paper, we consider such realistic scenarios of plan-
ning in a partially unknown workspace for robots with com-
plex and nonlinear dynamics. We focus on hybrid systems
as they reveal the generality of our approach and lead to in-
teresting application scenarios. Furthermore, we study the
meaning of partial satisfaction of a temporal logic specifi-
cation and how to measure it. Thus, the following problem
emerges as a key challenge:

“Given a mission expressed as a temporal logic spec-
ification for a mobile robot in a partially unknown
workspace, find a plan for the robot to satisfy the mis-
sion’s goals as closely as possible.”

The main contribution of this work is a framework for it-
erative temporal motion planning. This framework allows
for motion planning to be performed in a partially unknown
environment. It enables a robot with nonlinear hybrid dy-
namics to modify its plan online, when it discovers obstacles
that were not initially known, to satisfy a temporal logic
specification without having to return to its original point
and replan from scratch. The method is designed to avoid
the recomputation of the automaton that is associated with
the satisfaction of the temporal specification.

Another contribution of this paper is a scheme to measure
closeness of satisfaction of a temporal logic specification and
a method to maximize that measure. Thus, the framework
can handle and provide guarantees of maximum satisfaction
of the specification for the cases in which the discovered
obstacles block regions of interest and render the tempo-
ral specification unsatisfiable. Then, instead of aborting the
mission, the robot modifies its plan such that the measure
of closeness of satisfaction of the specification is maximized.
For a typical robotic task specification, optimizing this mea-
sure corresponds to satisfying as many requirements in the
specification as the environment allows.

We tested this framework on a second-order car-like robot
with hybrid dynamics in an office environment where regions
of interest are known a priori. The robot was given a tempo-
ral specification requiring it to visit the regions of interest,
without initial knowledge of obstacles that make some of the
regions unreachable. In our simulation experiments, we var-
ied the number of regions the robot should visit as well as
the accuracy of the robot’s initial map of the workspace. In
all cases, our framework successfully found a trajectory for
the robot to satisfy the specification as closely as possible.

The remainder of the paper is organized as follows. Sec-
tion 1.1 contains related work. Section 2 describes our hy-
brid robot model and the type of temporal logic that we use.
Section 3 details the problem we consider and gives a high-
level overview of our approach to solving it. We present our
iterative temporal motion-planning framework in Section 4.
In Section 5, we introduce our simulation experiment and
demonstrate results. The paper concludes with final remarks
and a discussion of future work in Section 6.

1.1 Related Work
Much work has been done toward the problem of planning

for robotic systems to satisfy high-level temporal logic spec-
ifications. For general robot models with nonlinear dynam-
ics, static workspaces, and temporal goals, motion planning
approaches have been proposed to solve the problem using
deterministic µ-calculus specifications [14] and co-safe LTL
specifications [3–5,27].

Synthesis-based approaches to such problems require stro-
ng assumptions on the robot’s dynamics and a construction
of a finite discrete model for the motion of the robot in
its workspace with a simulation relation to the continuous
model. A provably correct hybrid controller can then be
generated as a state machine that encodes the robot actions
necessary to satisfy the task [18]. The synthesis of this hy-
brid controller requires time and space polynomial in the
size of the reachable state space of the system; this is often
called the state explosion problem [19]. One way to address
this problem is to use a coarser abstraction, which requires
a stronger assumption on controllers. Other suggestions in-
clude receding horizon techniques [32]. Work has also been



done to address the issue of controller uncertainty, modeling
the robot as a Markov decision process [9,22,23].

The issue of synthesis from high-level specifications in an
unknown or dynamic environment has been studied both
for abstract systems (e.g., [6]) and specifically for robotics
(e.g., [7, 15, 25, 29]). If the geometry of the environment
changes, whether due to an unknown region becoming reach-
able [29] or a known region becoming unreachable [25], then
the hybrid controller must be updated to incorporate the
change. As global resynthesis of the hybrid controller is
expensive, there exist approaches to locally patch the con-
troller to incorporate the changes in less time; still, initial
work in this area has shown that patching the hybrid con-
troller can still require significant time to complete [25]. In
addition, the work in [12] addresses the issue of motion plan-
ning for a mobile robot to move from a start region to a goal
region, where secondary regions of interest can potentially
be discovered along the way. When a secondary target is
discovered, the robot replans a new trajectory to visit the
target along its way to the goal region.

Our work is most closely related to [3–5, 27] in that we
are taking a motion-planning approach instead of using syn-
thesis. Synthesis is a process that generates a strategy to
ensure system correctness in all possible scenarios. Such
approaches require knowledge of all possible environmental
uncertainties. However, in real-world applications, it may
not be feasible to obtain enough information of the envi-
ronment for synthesis. Also, when there are too many un-
knowns, synthesizing a plan can be unsuccessful. In such
cases, iterative planning methods are more natural and vi-
able to employ since they do not require a full knowledge of
the environmental restrictions. Therefore, in this paper, we
propose an online iterative planning approach to deal with
partially unknown environments. Rather than accounting
for everything that can go wrong, we plan based on what
we know and deal with new restrictions only when they are
discovered. In other words, we plan a trajectory given the
currently known state of the environment. During execution
of the trajectory, if an unforeseen problem is encountered,
we replan a new trajectory from the current state on-the-
fly. This framework is inspired by replanning scenarios in
robotics [1,2].

A key advantage of our approach lies in the high-level
structure through which we guide a low-level continuous mo-
tion planner. This high-level structure is a product of the
abstraction of the hybrid system and an automaton that de-
rives from the temporal logic specification. The abstraction
is achieved quickly by a geometric partition of the robot’s
workspace. However, the automaton from the specification
can be very expensive to compute. By keeping the automa-
ton and the abstraction separate, we prevent changes to the
environment from requiring us to recompute the automa-
ton. Changes to the environment simply require modifica-
tions to the decomposition of the workspace and, hence, to
the abstraction, which is an inexpensive operation to per-
form. This is in contrast to other works that use synthe-
sis approaches to plan for robots to satisfy temporal logic
specifications. In these works, typically the task specifi-
cation and assumptions on the environment must be en-
coded into a single hybrid controller that can be expensive
to change [18, 25]. Another advantage of our framework is
the use of motion planning, which supports systems with
any type of high-dimensional hybrid (possibly nonlinear) dy-

namics. Synthesis-based approaches deal with a restricted
class of robot systems that typically involve linear dynamics.
When the dynamics of the system are sufficiently complex, it
is difficult (if not impossible) to synthesize provably correct
controllers [5].

The issue of what to do when a specification is determined
to be unsatisfiable has been explored before. In [28], an
algorithm was defined to report a reason as to why a GR(1)
LTL specification is unrealizable. The work in [15] presents a
method of changing an unsatisfiable nondeterministic Büchi
automaton into the“closest”satisfiable one, where all actions
of the robot are represented using a finite state machine.
Our approach to unsatisfiable specifications differ in that we
do not change the automaton; instead, we provide a simple
metric to define partial satisfaction that is meaningful for
an interesting set of scenarios.

2. PRELIMINARIES
2.1 Robot Hybrid Model

In this paper, we consider a general mobile robot whose
dynamics are subject to restrictions in the regions of a par-
tially unknown environment. We describe its motion in such
an environment by the hybrid systemH = (S, s0, inv, sense, E,
guard, jump, U , flow,Π, L), where

• S = Q×X is the hybrid state space that is a product
of a set of discrete modes, Q = {q1, q2, . . . , qm} for
some finite m ∈ N, by a set of continuous state spaces
X = {Xq ⊆ Rnq : q ∈ Q};

• s0 ∈ S is the initial state;

• inv = {invq : q ∈ Q}, is the set of invariants, where
invq : Xq → {⊤,⊥};

• sense : Xq → {⊤,⊥}, is the sensing function that
returns true if an unknown obstacle is detected;

• E ⊆ Q×Q describes discrete transitions between modes
in Q;

• guard = {guardqi,qj : (qi, qj) ∈ E}, where guardqi,qj

: Xqi × {⊤,⊥} → {⊤,⊥} is a guard function that
enables transitions between different modes given the
continuous state of the robot and the unknown-obstacle
detector readings (i.e., output of sense);

• jump = {jumpqi,qj : (qi, qj) ∈ E}, where jumpqi,qj
: Xqi → Xqj is the jump function. In this paper, we
assume that each jumpqi,qj is the identity function;

• U = {Uq ⊂ Rmq : q ∈ Q} is the set of input spaces;

• flow = {flowq : q ∈ Q}, where flowq : Xq × Uq ×
R≥0 → Xq is the flow function that describes the con-
tinuous dynamics of the system through a set of dif-
ferential equations;

• Π is a set of atomic propositions;

• L : S → 2Π is a labeling function assigning to each
hybrid state possibly several elements of Π.

A pair s = (q, x) ∈ S denotes a hybrid state of the system.
flowq(x, u, t) gives the continuous state of the system when
the input u is applied for t time units starting from state x.

2.2 Syntactically Co-safe LTL
We use syntactically co-safe LTL to write the specifica-

tions of robotic tasks. Its syntax and semantics are defined
below.



Definition 1 (syntax). Let Π = {π1, π2, . . . , πN} be
a set of Boolean atomic propositions. A syntactically co-safe
LTL formula over Π is inductively defined as following:

φ := π | ¬π | φ ∨ φ |φ ∧ φ | Xφ |φUφ | Fφ

where π ∈ Π, ¬ (negation), ∨ (disjunction), and ∧ (conjunc-
tion) are Boolean operators, and X (“next”), U (“until”), and
F (“eventually”) are temporal operators.

Definition 2 (Semantics). The semantics of syntac-
tically co-safe LTL formulas are defined over infinite traces
over 2Π. Let σ = {τi}∞i=0 with τi ∈ 2Π be an infinite trace
and σi = τi, τi+1, . . . and σi = τ0, τ1, . . . , τi−1. σi is a prefix
of the trace σ. σ |= φ indicates that σ satisfies formula φ
and is recursively defined as following:

• σ |= π if π ∈ τ0;
• σ |= ¬π if π /∈ τ0;
• σ |= φ1 ∨ φ2 if σ |= φ1 or σ |= φ2;
• σ |= φ1 ∧ φ2 if σ |= φ1 and σ |= φ2;
• σ |= Xφ if σ1 |= φ;
• σ |= φ1Uφ2 if ∃k ≥ 0, s.t. σk |= φ2, and ∀i ∈ [0, k),
σi |= φ1;
• σ |= Fφ if ∃k ≥ 0, s.t. σk |= φ.

An important property of syntactically co-safe LTL formu-
las is that, even though they have infinite-time semantics,
finite traces are sufficient to satisfy them. Hence, syntacti-
cally co-safe LTL is an appropriate specification language to
describe robotic tasks which are required to be realized in
finite horizon.

From a syntactically co-safe LTL formula φ, a determinis-
tic finite automaton (DFA) can be constructed that accepts
precisely all of the formula’s satisfying finite traces [21].
Such a DFA is given by a tuple Aφ = (Z,Σ, δ, z0, F ), where

• Z is a finite set of states;
• Σ = 2Π is the input alphabet, where each input symbol

is a truth assignment to the propositions in Π;
• δ : Z ×Σ → Z is the transition function;
• z0 ∈ Z is the initial state;
• F ⊆ Z is the set of accepting states.

A finite run of Aφ is a sequence of states ω = ω0ω1 . . . ωn,
where ω0 = z0 and ωi ∈ Z for i = 1, . . . , n. ω is called an
accepting run if ωn ∈ F . An input trace that realizes an
accepting run is a φ-satisfying trace.

3. PROBLEM DESCRIPTION AND OVER-
ALL APPROACH

In this paper, we consider a mobile robot with complex
and possibly nonlinear hybrid dynamics moving in an en-
vironment. Some of the features and obstacles in the en-
vironment may not be known before the deployment of the
robot. We make the natural assumption that the robot can
detect an unknown obstacle when it is within the robot’s
obstacle-detector range. This is an assumption commonly
made in related work [2]. The regions in the environment
impose different sets of restrictions on the dynamics of the
robot. Each point in the environment holds a set of prop-
erties (propositions). Let Π denote the set of all environ-
mental propositions. We assume that while the robot has
full information of the propositions and their locations in
the environment, it has only partial a priori knowledge of

the regions (obstacles) of the environment. We are inter-
ested in deploying this robot in such a partially unknown
environment with temporal logic specifications.

Due to possible unknown obstacles in the environment,
the satisfaction of the specification cannot be guaranteed.
Nevertheless, we do not want the robot to abort the mis-
sion if it realizes that fragments of the specification cannot
be met. Instead, we require the robot to satisfy the speci-
fication as closely as possible. We envision many scenarios
where this can be an advantageous approach (e.g., the jan-
itor robot example in Section 1). We formally define and
discuss the definition of satisfying a specification as closely
as possible below and in Section 4.3. We now focus on the
following problem.

Problem: Given a partially unknown environment and
a task specification expressed as a syntactically co-safe LTL
formula φ over Π, find a robot motion plan that satisfies φ
as closely as possible.

We model the motion of the robot in the environment as
a hybrid system (Section 2.1). This allows us to capture the
changes in the robot dynamics by the transitions between
the modes of the hybrid system. We assume that the robot
moves in a two-dimensional environment. We choose the
continuous states of the hybrid system in mode q, x ∈ Xq,
such that its first two components refer to the position of
the robot. Let Pr(A) denote projection of a Euclidean set
A onto R2. We define the workspace of the robot as W =
{(q,Wq) : Wq = Pr(Xq), q ∈ Q} and denote the set of
(polygonal) obstacles in mode q by Wq,obs. The robot has
partial a priori knowledge of the obstacles in its workspace.
Thus, Wq,obs = W k

q,obs ∪ W u
q,obs where W k

q,obs and W u
q,obs

refer to the sets of known and unknown obstacles in mode
q, respectively. We also assume that the robot can detect
an unknown obstacle when it comes within some proximity
of it. This is represented by sense in the hybrid model. We
establish the relationship between the hybrid state of the
robot s = (q, x) and its workspace by function hH : S →
W . Similarly, given w ∈ W , we define h−1

H (w) = {s ∈ S :
hH(s) = w}. We choose Π as the set of atomic propositions
for the hybrid system and assign them to the hybrid states
according to their positions in the workspace. Hence, the
problem is now reduced to designing a motion plan for H
that satisfies φ.

We employ a multi-layered synergistic framework [4, 27]
to solve the motion planning problem by using the initial
knowledge of the workspace. The framework consists of
three main layers: a high-level search layer, a low-level search
layer, and a synergy layer that facilitates the interaction be-
tween the high-level and the low-level search layers (see Fig-
ure 2). The high-level planner uses an abstraction of the
hybrid system and the specification formula φ to suggest
high level plans. The low-level planner uses the dynamics
of the hybrid system and the suggested high-level plans to
explore the state-space for feasible solutions. In our work,
the low-level layer is a sampling-based planner and does not
assume the existence of a controller [26].

To satisfy a specification in an undiscovered environment,
an iterative high-level planner is employed. That is, ev-
ery time an unknown obstacle is encountered, the high-level
planner modifies the coarse high-level plan online by ac-
counting for the geometry of the discovered obstacle, the
path traveled to that point, and the remaining segment of
the specification that is yet to be satisfied. This replanning



is achieved in four steps. First, a “braking” operation is
applied to prevent the robot from colliding with the newly
discovered obstacle. Simultaneously, a new abstraction of
the hybrid system is computed through a new decomposi-
tion of the modified environment map (workspace) [3]. Next,
the traveled path is mapped on the new abstraction model.
Finally, a new satisfying plan is generated as a continua-
tion of the explored portion of the old plan. Thus, the robot
does not need to reinitialize (return to its starting point) ev-
ery time it encounters an unknown environmental feature.
Moreover, the robot’s progress in satisfying the specifica-
tion is preserved. This iterative motion-planning framework
is discussed in detail in Section 4.

Recall that from φ, a DFA can be constructed that ac-
cepts all of the formula’s satisfying finite traces [21,27]. We
use this DFA to design a satisfying high-level plan. We also
utilize the DFA to define a metric to measure the “distance-
to-satisfaction” of a specification in cases in which the spec-
ification is unsatisfiable. This measure is used to produce a
high-level plan that satisfies the specification as closely as
possible. We formally define this metric in Section 4.3.

In general, a contingency maneuver can be used instead
of a “braking” operation as the first step of the approach.
Our framework is by no means limited to a stopping ma-
neuver, and the exploration for the “best” contingency plan
is left for future work. Moreover, it is important to note
that our method of generating a new high-level plan is fast.
This is due to the following two reasons: (1) we are not re-
computing the DFA, which does not need to change since
the specification formula does not change following discov-
ery of an obstacle, and (2) we generate the abstraction of
the hybrid system by decomposing the workspace through
triangulation, which has been shown to be computationally
inexpensive [5]. For instance, the computation time for high-
level replanning for the janitor robot example moving in the
office environment shown in Figure 1 is in the order of a
fraction of a second.

4. PLANNING FRAMEWORK
In this section, we describe our iterative planning frame-

work, which consists of three main layers: a high-level plan-
ner, a low-level search layer, and a synergy layer as shown
in Figure 2. The high-level planner generates a set of coarse
satisfying plans by searching over a structure called a prod-
uct automaton (Section 4.2). This structure is the product
of discrete abstraction M of the hybrid system (Section 4.1)
and automaton Aφ corresponding to the formula φ. Each
of these plans is a sequence of the states of the product au-
tomaton which can be mapped back to the states of M.
The low-level search layer produces continuous trajectories
that follow a satisfying high-level plan. This is achieved by
expanding a sampling-based motion tree in the direction of
a suggested high-level plan in the hybrid state-space. The
synergy layer facilitates the two-way interaction between the
high-level and the low-level search layers (Sections 4.2 and
4.3). Algorithm 1 contains the framework pseudocode; it
relies on subroutines detailed in Algorithms 2, 3, and 4.

4.1 Abstraction
To produce a high-level plan, we first abstract the hy-

brid system H to a discrete model M = (D, d0,→D,Π, LD),
where D is a set of discrete states, d0 ∈ D is the initial state,
→D⊆ D × D is the transition relation, and LD : D → 2Π

Figure 2: Multi-layered synergistic motion planning
framework.

is a labeling function. We refer to the model M as the ab-
straction of the hybrid system. To construct M, we first
partition each workspace Wq (for each discrete mode q) into

a set of regions (i.e. Wq =
⋃Nq

r
i=1 r

q
i ). Specifically, we use

a geometry-based conforming Delaunay triangulation of Wq

that respects the propositional regions and the boundaries
of the obstacles.

Recall from Section 3 that Wq = Pr(Xq), where Xq is
the domain of the continuous states of the hybrid system in
mode q. Thus, the decomposition of Wq induces a partition
in the hybrid state space. Let Sq

i denote the set of all hybrid
states that correspond to the region rqi in Wq (i.e. Sq

i =
{(q, x) ∈ S | x ∈ Pr−1(rqi ), r

q
i ⊆Wq, q ∈ Q}). Then,

S =
⋃

q∈Q

Nq
r⋃

i=1

Sq
i .

We associate a unique discrete state d ∈ D to each Sq
i . We

model this correspondence with a family of maps {Υq : Sq →
D | Sq = q × Xq , q ∈ Q}; then the previous sentence can
be written as Υq(S

q
i ) = d. Moreover, D can be written as

D = ∪q∈Q{Υq(S
q
i ) | 1 ≤ i ≤ Nq

r }.
We construct the transition relation →D to include ge-

ometric adjacencies between regions of a given workspace
as well as adjacencies between discrete modes enabled by
guard functions of the hybrid system. Specifically, for each
pair of geometrically adjacent regions rqj and rqk in Wq, we

add the transition
(
Υq(S

q
j ),Υq(S

q
k)
)
to →D; furthermore for

each pair of sets Sq
l and Sq′

m between which a discrete jump

is possible, we add the transition (Υq(S
q
l ),Υq(S

q′
m)) to →D.

All the hybrid states in Sq
i have the same labels since the

triangulation of each workspace Wq respects the proposi-
tional regions. Hence, the labeling function LD corresponds
to the labeling function L from the definition of H ; that is,
LD(Υq(S

q
i )) = L(s) for every s ∈ Sq

i . For further details,
we refer the reader to our previous work [3].

It should be noted that the initial construction of M is
based on the initial knowledge of the environment map. As
the robot discovers unknown obstacles, the map is updated
and a new abstraction is generated. Given that this method
is based on a triangulation of a two-dimensional space, ob-
taining a new abstraction is fast. Furthermore, we initially
assume transitions between all adjacent partitions of the
workspace are realizable even though the dynamics of the
robot may prevent some transitions. This does not create a



problem in our planning framework because the synergistic
framework will bias its discrete search against unrealizable
transitions. In fact, one of the advantages of our planning
framework is that it does not require a bisimilar abstraction
and, hence, allows for inexpensive and fast construction of
an approximate abstraction model.

4.2 Initializing the Product Automaton
The structure we use to guide the tree of system trajec-

tories is a product automaton, which is computed as P =
M×Aφ. In line 2 of Algorithm 1, we compute the minimal
DFA Aφ corresponding to the formula φ [21, 24]. Though
this translation can require time doubly exponential with
respect to the number of propositions in φ, we only com-
pute Aφ once, so the translation can be seen as an offline
step. We refer to elements of P as high-level states. P is a
directed graph in which there exists an edge from high-level
state (d1, z1) to (d2, z2) iff d1 and d2 are adjacent in M and
Aφ.δ(z1,M.LD(d2)) = z2, where Aφ.δ is the deterministic
transition function for Aφ. The latter condition means that
there exists a transition in Aφ from z1 to z2 whose label is
satisfied by the set of propositions M.LD(d2) that hold true
at d2. We call a high-level state (d, z) ∈ P an accepting (or
goal) state iff z is an accepting state in Aφ.

For each high-level state (d, z) ∈ P , we assign a weight
defined by

w(d, z) =
(cov(d, z) + 1) · vol(d)

DistFromAcc(z) · (numsel(d, z) + 1)2
(1)

where cov(d, z) is the number of tree vertices (generated by
the low-level planner) associated with (d, z) (an estimate of
coverage), vol(d) is the area of the workspace correspond-
ing to the abstraction state d, DistFromAcc(z) is the min-
imum distance from automaton state z to an accepting state
in the automaton, and numsel(d, z) is the number of times
(d, z) has been selected for tree expansion in line 2 of Algo-
rithm 4. Then, to each directed edge e = ((d1, z1), (d2, z2))
in P , we assign the weight

w(e) =
1

w(d1, z1) · w(d2, z2) . (2)

The values in (1) and (2) are continually updated as the
planning framework progresses. For example, whenever the
low-level planner creates a tree vertex associated with a
high-level state (d, z), the value of cov(d, z) is incremented
by one. The estimates in (1) and (2) have been shown to
work well in previous work [4]. In general, a weighing scheme
that incorporates more than just number-of-edge distance is
useful to promote expansion in unexplored areas (i.e., where
cov and numsel are both small) and to discourage expan-
sion in areas where attempts at exploration have repeatedly
failed (i.e., where numsel ≫ cov).

4.3 Planning
Once the product automaton has been computed, line 4

of Algorithm 1 computes a trajectory for the system that
satisfies the formula φ as closely as possible. The details of
this approach are given in Algorithm 2. Many details are
similar to the framework discussed in past works [3–5]. We
differ from them by allowing for online replanning in light of
newly discovered obstacles in Algorithm 1, and by partially
satisfying an unsatisfiable specification when computing a
lead in Algorithm 3.

The core loop of our planning algorithm is shown in lines 4,
5, and 6 of Algorithm 2. The subroutine ComputeLead in

Algorithm 3 creates leads that reach as close as possible
to an accepting state. Each lead computed in line 4 is a
suggested sequence of contiguous high-level states through
which Explore attempts to guide the tree of motions.

Measure of Satisfiability.
We present a measure of satisfiability that uses the graph-

based distance to an accepting state in the DFA. Each high-
level state (d, z) is annotated with the graph-based distance
value DistFromAcc(z) corresponding to the automaton
state z. Our framework computes trajectories that end in a
high-level state (dg, zg) such that DistFromAcc(zg) is min-
imized. The function DistFromAcc is an intuitive measure
on the automaton that translates to a reasonable high-level
plan for many formulas that we have encountered, such as
the example specification in Section 1. For such a specifica-
tion, a trajectory that minimizes DistFromAcc takes the
robot to all reachable regions of interest, while a non-optimal
trajectory with respect to DistFromAcc would miss some
reachable regions. The topic of “approximating” temporal
properties is a subject of ongoing research. Generally, it re-
quires making the satisfaction relation quantitative rather
than qualitative. For example, the satisfaction value can be
an arbitrary lattice element rather than a Boolean value;
cf. [20]. In addition, the authors in [31] describe a synthesis
algorithm to minimize quantitative satisfaction error given
a set of contradictory specifications.

Algorithm 1 Framework for planning for hybrid systems
with LTL specifications in a partially unknown environment

Input: A robot model described by a hybrid system H =
(S, s0, inv, sense, E,guard, jump, U, flow,Π, L),
a bounded workspace W ⊂ R2,
a set of initially known obstacles O ⊂W ,
a co-safe LTL formula φ defined over H.Π,
and a time bound tmax.

Output: Returns true if successful in moving the robot through
the workspace to satisfy φ; returns false otherwise.

1: M← ComputeAbstraction(W,O,H.Π,H.L)
2: Aφ ← ComputeMinDFA(φ,W,H.L)
3: P ← ComputeProduct(M,Aφ, H.Π,H.L)
4: {xi}i≥0 ← Plan(H,W,O,H.Π,H.L,P, tmax)
5: j ← 1
6: while j < |{xi}| do
7: Move system from state xj−1.s to state xj .s
8: if H.sense(xj .s) = ⊤ then
9: Apply braking operation to reach stopped robot state s′

10: H.s0 ← s′

11: Add discovered obstacle to O
12: M← ComputeAbstraction(W,O,H.Π,H.L)
13: P ← ComputeProduct(M,Aφ, H.Π,H.L)
14: {xi}i≥0 ← Plan(H,W,O,H.Π,H.L,P, tmax)
15: if Plan was unsuccessful then
16: return false
17: j ← 1
18: j ← j + 1
19: return true

ComputeLead computes a lead that ends in a high-level
state (d, z) such that the number of transitions from z to an
accepting state in the automaton, given byDistFromAcc(z),
is minimized. If the specification φ is satisfiable in the cur-
rent environment, then DistFromAcc(z) = 0, i.e., (d, z) is
an accepting state. On the other hand, if the specification φ
is unsatisfiable, then z is as close as possible to an accepting
state in the automaton. In many cases, there are multiple
candidate high-level states that tie under theDistFromAcc



metric. To break ties, we choose the high-level state with
minimal edge-weight distance from the starting high-level
state, using the edge-weight function defined in (2).

The subroutine ComputeAvailableCells in line 5 of Al-
gorithm 2 computes the set of high-level states that exist in
the current lead and are nonempty. A high-level state (d, z)
is nonempty if there exists at least one tree vertex associated
with it, i.e., if cov(d, z) > 0. In the first few iterations of
Plan, the only nonempty high-level state will be (d0, z0),
where d0 is the abstraction region containing the initial sys-
tem state H.s0, and z0 is the initial state of the DFA. As the
algorithm progresses, the tree planner reaches more high-
level states, and the set C of available cells grows larger. To
promote progress, we favor high-level states that are clos-
est to the end of the lead. Specifically, moving backwards
along the lead, for each nonempty high-level state (d, z) we
encounter, we add (d, z) to the set C of available cells and
then quit early with probability 0.5.

The subroutine Explore, given in Algorithm 4, corre-
sponds to the low-level search layer of our framework. This
function promotes tree expansion in high-level states from
the set C. In line 2 of Explore, a high-level state (d, z) is
sampled from C with probability w(d, z)/

∑
(d′,z′)∈C w(d′, z′).

Then, in line 3, we perform one iteration of the low-level tree
planner to promote expansion from the set of tree vertices
associated with the high-level state (d, z) and obtain a new
tree vertex v. Any tree-based motion planner can be used
in this step; in our approach, we are using an EST-like ap-
proach [13]. If z is an accepting state of the automaton, then
v is returned as the endpoint of a solution trajectory. This
trajectory is reconstructed by Plan in line 8 by following
parent vertices back to the root of the tree. Otherwise, if
the new vertex v corresponds to a newly reached high-level
state that is in the current lead, then the high-level state is
added to the set of available cells in line 8 of Explore to
be considered in the future.

4.4 Discovering an Obstacle and Replanning
Once a system trajectory that satisfies φ is computed,

we begin moving the robot along the trajectory. At each
state in the trajectory, we query the robot’s range sensor in
line 8 of Algorithm 1. We assume that the robot’s range
sensor checks for obstacles within radius ρ of the center of
the robot and reports a polygonal model of any previously
unknown obstacle that it finds. If no new obstacles are dis-
covered along the trajectory, then the robot reaches the final
state of the planned trajectory and stops, having completed
its mission. If an obstacle is discovered by the range sen-
sor from some state s along the trajectory, then we apply a
braking operation to the robot to reach some stopped state
s′. The braking operation should respect the dynamics of
the system. In the general case, the robot should perform
a contingency maneuver to avoid the newly discovered ob-
stacle [1, 11]. The radius ρ of the range sensor is assumed
to be large enough for the braking or contingency maneau-
ver to safely be performed. Once the braking maneuver is
complete, we recompute the discrete abstraction M to ig-
nore the new obstacle, recompute the product automaton P ,
and replan a trajectory from s′, following the same planning
approach described in Section 4.3. Once a new trajectory
is found by the planner, we resume moving the robot from
s′ along the new trajectory. It is important to note that
because we recompute the entire discrete abstraction from

scratch, all of the previous edge weights in P are lost and
recomputed in the next planning iteration.

Algorithm 2 Plan: Temporal planning algorithm for hy-
brid systems

Input: A robot model described by a hybrid system H =
(S, s0, inv, sense, E,guard, jump, U, flow,Π, L),
a bounded workspace W ⊂ R2,
a set of known obstacles O ⊂ W ,
a product automaton P,
and a time bound tmax.

Output: Returns a sequence of triplets, each containing hybrid
system state, control, and corresponding high-level state, rep-
resenting a system trajectory that satisfies the specification.
Reports an error and aborts if no such trajectory could be
found within time tmax.

1: T ← InitializeTree(s0)
2: solved← false
3: while Time Elapsed < tmax do
4: K = ((d1, z1), . . . , (dk , zk))← ComputeLead(P, H.s0)
5: C ← ComputeAvailableCells(K)
6: v ← Explore(H,W,O,T , C,K,P,∆t)
7: if v 6= NULL then
8: Follow v.parent to construct trajectory {xi}i
9: return {xi}i
10: Report unsuccessful and exit

Algorithm 3ComputeLead: Subroutine to compute high-
level guides

Input: A product automaton P (product of DFA and workspace
decomposition) and a starting high-level state (d0, z0).

Output: Returns a lead, which is a sequence of high-level states
beginning with the given start (d0, z0) and ending as close as
possible to an accepting state.

1: F ← argmin(d,z)∈P{DistFromAcc(z)}
2: Run Dijkstra’s all-pairs shortest-path algorithm on P with

source (d0, z0); store parent map parent and weight map
weight

3: (dg , zg)← argmin(d,z)∈F {weight[(d, z)]}
4: Construct lead K = ((d0, z0), . . . , (dg , zg)) using parent map
5: return K

5. EXPERIMENTS
To test our approach, we have created an experiment for a

second-order car with hybrid dynamics to explore an office-
like environment. The full map of the office is shown in
Figure 3(a). Geometrically, the robot is modeled as a rect-
angle with length l = 0.2 and width w = 0.1. The robot
state has a continuous component (x, y, θ, v, ψ), which in-
cludes the planar position (x, y) ∈ [0, 10]2, heading θ ∈
[−π, π], forward velocity v ∈ [−1/6, 1], and steering angle
ψ ∈ [−π/6, π/6]. The robot state also includes a discrete
component g ∈ {1, 2, 3}, corresponding to the gear of the
car. The car is controlled with the input pair u = (u0, u1),
where u0 is the forward acceleration and u1 ∈ [−π/18, π/18]
is the steering angle velocity. Given the current gear g, we
bound the acceleration input so that u0 ∈ [−1/6, g/6]. The
dynamics of the car are given by ẋ = v cos(θ), ẏ = v sin(θ),

θ̇ = v tan(ψ)/l, v̇ = u0, and ψ̇ = u1. We model each gear
as a separate discrete mode of the hybrid system. We de-
fine guards and jumps on the dynamics of the robot so that
the robot switches gears as follows. If, when in gear g < 3,
the car achieves velocity v > g/6, then the car switches to
gear g + 1. If, when in gear g > 1, the car achieves velocity



Algorithm 4 Explore: Tree-exploration subroutine

Input: A robot model described by a hybrid system H =
(S, s0, inv, sense, E,guard, jump, U, flow,Π, L),
a bounded workspace W ⊂ R2,
a set of known obstacles O ⊂ W ,
a tree of motions T ,
a set of available high-level states C,
a lead K,
a product automaton P,
and an exploration time ∆t.

Output: Returns a tree vertex that reaches the goal high-level
state if one was found; returns NULL otherwise.

1: while Time Elapsed < ∆t do
2: (d, z)← C.sample()
3: v ← SelectAndExtend(T ,H, (d, z),W,O,P,Prop)
4: if v.z 6= ∅ then
5: if v.z.isAccepting() then
6: return v
7: if (v.d, v.z) 6∈ C ∧ (v.d, v.z) ∈ L then
8: C ← C ∪ {(v.d, v.z)}
9: return NULL

v < (g − 1)/6, then the car switches to gear g − 1. Immedi-
ately following a gear switch, the acceleration input bounds
are updated accordingly. Furthermore, we define guards in
the office so that in small rooms (rooms containing the red
and orange propositions), the car is restricted to first gear.
In larger rooms (rooms containing the yellow, purple, and
green propositions), the car is restricted to first and second
gears. Specifically, the guards in the rooms prevent the robot
from switching outside of the allowable gears by restricting
the robot’s velocity, so that the guard conditions to switch
gears are never satisfied. The car is given a sensing radius
of 1. If, when executing a solution trajectory, it discovers
a new obstacle within its sensing radius, the car switches
to an “emergency” mode in which it applies an emergency
deceleration sufficient to reduce its velocity to ǫ > 0 before
colliding with the obstacle. It then rebuilds the abstrac-
tion, recomputes the product automaton, switches out of
the emergency mode into the mode corresponding to gear
g = 1, and computes a new trajectory to follow.

In this experiment, the robot is asked to visit N randomly
chosen regions of interest in any order, whereN ∈ {1, . . . , 5}.
Formally, the robot is given the co-safe LTL specification

φN =

N−1∧

i=0

Fpi, (3)

where each pi corresponds to a propositional region in the
office environment.

The robot’s initial map includes the walls of the office.
However, the robot does not know the current status of the
doors into each room, nor does it know whether there are
any obstacles in the central lobby. Specifically, the robot is
unaware that the doors to two of the rooms are closed (we
model this as rectangular obstacles filling the doorways),
and there is a large rectangular obstacle in the center of the
lobby. Figure 3(a) contains the actual map of the office, and
Figure 3(b) contains the robot’s initial map. We include the
triangulations in the maps in Figure 3 to demonstrate gran-
ularity. A triangulation always respects the currently known
obstacles and the geometry of the propositional regions.

We have implemented our framework and experiments in
C++ using the Open Motion Planning Library (ompl) [8].
For the co-safe LTL formulas considered in our experiments,

(a) (b)

Figure 3: (a) an office-like environment with propo-
sitional regions of interest; (b) the robot’s initial
map, in which 3 obstacles are unknown.

Table 1: Experimental data for office experiment
with a full initial map and a partial initial map

Initial Map N Solution Time
Time Computing
Product P = M × Aφ

Full 1 1.36 0.003
2 4.05 0.003
3 11.19 0.004
4 21.49 0.006
5 34.85 0.008

Partial 1 3.78 0.009
2 19.32 0.037
3 54.83 0.088
4 257.82 0.206
5 549.86 0.415

we have converted them to minimal DFA’s by using scheck
[24]. To triangulate environments, we use Triangle [30]. All
experiments were run on the Shared University Comput-
ing Grid at Rice. Each experiment used a 2.83 GHz Intel
Xeon processor with 16 GB RAM. For each set of input
parameters, we average our timing measurements over 50
independent runs.

Table 1 contains experimental data for satisfying the cov-
erage formula φN in the office environment, comparing the
full initial map (Figure 3(a)) to a partial initial map (Fig-
ure 3(b)). With a fully accurate initial map, the robot
does not encounter any unanticipated obstacles, and so our
method behaves equivalently to the past method presented
in [3–5]. We are including data for the full initial map for
comparison. For the partial map, planning times increase
significantly with the number of regions of interest in the
coverage formula. Visiting more regions causes the robot

Figure 4: A sample trajectory that satisfies the spec-
ification “Visit the green, orange, and yellow regions
in any order” as closely as possible.



(a) (b) (c) (d)

Figure 5: Office-like environments in which (a) all obstacles are known; (b) 3 obstacles are unknown; (c) 6
obstacles are unknown; (d) all 16 obstacles are unknown.

Table 2: Experimental data for office experiment
with formula φ5 when varying the initial map

Number of Initially
Unknown Obstacles

Solution Time
Time Computing
Product P = M × Aφ

0 34.85 0.008
3 594.86 0.415
6 1430.71 0.952
16 3001.96 1.966

to discover more unknown obstacles, each of which requires
the robot to brake. Every time the robot comes to a stop
near a newly discovered obstacle, planning a solution tra-
jectory from that stopped point is often time-consuming for
the low-level motion-planning layer. This is due to the close
proximity of the robot and the obstacle. With longer-range
sensors, this problem can be alleviated. For all experiments,
times spent recomputing the product automaton P remain
very small (see Tables 1 and 2). It should be noted that the
times spent recomputing P in Tables 1 and 2 also include
the time to regenerate the abstraction M. Figure 4 contains
an example trajectory for the robot, given a specification to
visit three regions of interest (green, orange, and yellow), one
of which is unreachable (green) due to a closed door. First,
the robot drives toward the room containing the green re-
gion. When it encounters the door, it brakes and recomputes
the abstraction and the product automaton. The planning
framework uses our measure of satisfiability to generate an-
other trajectory that satisfies the specification as closely as
possible, which is to visit the two remaining regions. A sim-
ilar replanning step occurs when the robot encounters the
large obstacle in the lobby. When the robot is in the room
with the orange region, it stays only in first gear as required.

To test the importance of the initial map, we have also
run experiments with initial maps of varying accuracy, rang-
ing from a completely known environment to a completely
unknown environment in which no obstacles or walls are ini-
tially known by the robot (except for the bounding box of
the environment). The four types of initial maps are shown
in Figure 5. As before, all propositional regions are initially
known. Table 2 contains data for this set of experiments.
We focus on solving φ5, the most difficult of the formulas to
consider. As seen in Table 2, the time spent building and
recomputing P and M is negligible compared to the time
spent planning solution trajectories.

6. CONCLUSION
In this paper, we have presented an iterative motion plan-

ning framework for a hybrid system with complex and possi-
bly nonlinear dynamics given a temporal logic specification

and a partially unknown environment. We have also pre-
sented a metric of satisfiability which we can optimize in
cases where obstacles in the environment prevent full sat-
isfaction of the given temporal logic specification; in such
cases, the robotic system satisfies the specification as closely
as possible.

For future work, we plan to change the replanning step
to retriangulate only the part of the workspace that has
changed upon discovery of a new obstacle, instead of re-
triangulating the entire workspace. This would allow the
framework to keep many of the edge weights in the prod-
uct automaton, so that not all information from the synergy
layer is lost. In addition, we plan to add support for obsta-
cles to disappear from the robot’s initial map (the current
framework only supports obstacles appearing). We could
also assume a probabilistic distribution on where and when
obstacles will appear, and then generate trajectories that
maximize probability of successful satisfaction of the speci-
fication. Finally, we would like to consider a“greedy”tempo-
ral motion planning approach that begins executing a partial
trajectory along a lead in the product automaton. This is
to prevent the framework from wasting time generating an
entire solution trajectory for a large specification, only to
discover an obstacle early in that trajectory, stop, and re-
compute another solution trajectory. As seen in our experi-
ments, when the robot’s initial map is sufficiently inaccurate,
this wasted planning time can add up.

7. ACKNOWLEDGMENTS
The authors would like to acknowledge Devin Grady, Ryan

Luna, and Mark Moll of Rice University for their helpful
feedback and suggestions. Work on this project by Maly,
Kavraki, Kress-Gazit, and Vardi has been supported in part
by NSF Expeditions 1139011. Maly, Lahijanian, Kavraki,
and Vardi have also been supported in part by NSF CCF
1018798. Kavraki has been supported in part by the U.S.
Army Research Laboratory and the U.S. Army Research Of-
fice under grant number W911NF-09-1-0383. This work was
also supported in part by the Shared University Grid at Rice
funded by NSF under Grant EIA-0216467 and a partnership
between Rice University, Sun Microsystems, and Sigma So-
lutions, Inc.

8. REFERENCES
[1] K. E. Bekris, D. K. Grady, M. Moll, and L. E.

Kavraki. Safe distributed motion coordination for
second-order systems with different planning cycles.
Intl. J. of Robotics Research, 31(2):129–149, Feb. 2012.



[2] K. E. Bekris and L. E. Kavraki. Greedy but safe
replanning under kinodynamic constraints. In IEEE
Intl. Conf. on Robotics and Automation, pages
704–710, 2007.

[3] A. Bhatia, L. Kavraki, and M. Vardi. Motion planning
with hybrid dynamics and temporal goals. In Decision
and Control, IEEE Conf. on, pages 1108–1115, 2010.

[4] A. Bhatia, L. Kavraki, and M. Vardi. Sampling-based
motion planning with temporal goals. In Robotics and
Automation, IEEE Int. Conf. on, pages 2689–2696,
May 2010.

[5] A. Bhatia, M. Maly, L. Kavraki, and M. Vardi.
Motion planning with complex goals. Robotics
Automation Magazine, IEEE, 18(3):55 –64, Sep. 2011.

[6] R. Bloem, K. Greimel, T. Henzinger, and
B. Jobstmann. Synthesizing robust systems. In Formal
Methods in Computer-Aided Design, pages 85–92,
2009.

[7] Y. Chen, J. Tumova, and C. Belta. LTL robot motion
control based on automata learning of environmental
dynamics. In Robotics and Automation, IEEE Int.
Conf. on, pages 5177 –5182, May 2012.
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