46 research outputs found

    Intense Transpositional Activity of Insertion Sequences in an Ancient Obligate Endosymbiont

    Get PDF
    The streamlined genomes of ancient obligate endosymbionts generally lack transposable elements, such as insertion sequences (IS). Yet, the genome of Wolbachia, one of the most abundant bacterial endosymbionts on Earth, is littered with IS. Such a paradox raises the question as to why there are so many ISs in the genome of this ancient endosymbiont. To address this question, we investigated IS transpositional activity in the unculturable Wolbachia by tracking the evolutionary dynamics and history of ISWpi1 elements. We show that 1) ISWpi1 is widespread in Wolbachia, being present in at least 55% of the 40 sampled strains, 2) ISWpi1 copies exhibit virtually identical nucleotide sequences both within and among Wolbachia genomes and possess an intact transposase gene, 3) individual ISWpi1 copies are differentially inserted among Wolbachia genomes, and 4) ISWpi1 occurs at variable copy numbers among Wolbachia genomes. Collectively, our results provide compelling evidence for intense ISWpi1 transpositional activity and frequent ISWpi1 horizontal transmission among strains during recent Wolbachia evolution. Thus, the genomes of ancient obligate endosymbionts can carry high loads of functional and transpositionally active transposable elements. Our results also indicate that Wolbachia genomes have experienced multiple and temporally distinct ISWpi1 invasions during their evolutionary history. Such recurrent exposition to new IS invasions may explain, at least partly, the unusually high density of transposable elements found in the genomes of Wolbachia endosymbionts

    Prevalence and Evolution of Core Photosystem II Genes in Marine Cyanobacterial Viruses and Their Hosts

    Get PDF
    Cyanophages (cyanobacterial viruses) are important agents of horizontal gene transfer among marine cyanobacteria, the numerically dominant photosynthetic organisms in the oceans. Some cyanophage genomes carry and express host-like photosynthesis genes, presumably to augment the host photosynthetic machinery during infection. To study the prevalence and evolutionary dynamics of this phenomenon, 33 cultured cyanophages of known family and host range and viral DNA from field samples were screened for the presence of two core photosystem reaction center genes, psbA and psbD. Combining this expanded dataset with published data for nine other cyanophages, we found that 88% of the phage genomes contain psbA, and 50% contain both psbA and psbD. The psbA gene was found in all myoviruses and Prochlorococcus podoviruses, but could not be amplified from Prochlorococcus siphoviruses or Synechococcus podoviruses. Nearly all of the phages that encoded both psbA and psbD had broad host ranges. We speculate that the presence or absence of psbA in a phage genome may be determined by the length of the latent period of infection. Whether it also carries psbD may reflect constraints on coupling of viral- and host-encoded PsbA–PsbD in the photosynthetic reaction center across divergent hosts. Phylogenetic clustering patterns of these genes from cultured phages suggest that whole genes have been transferred from host to phage in a discrete number of events over the course of evolution (four for psbA, and two for psbD), followed by horizontal and vertical transfer between cyanophages. Clustering patterns of psbA and psbD from Synechococcus cells were inconsistent with other molecular phylogenetic markers, suggesting genetic exchanges involving Synechococcus lineages. Signatures of intragenic recombination, detected within the cyanophage gene pool as well as between hosts and phages in both directions, support this hypothesis. The analysis of cyanophage psbA and psbD genes from field populations revealed significant sequence diversity, much of which is represented in our cultured isolates. Collectively, these findings show that photosynthesis genes are common in cyanophages and that significant genetic exchanges occur from host to phage, phage to host, and within the phage gene pool. This generates genetic diversity among the phage, which serves as a reservoir for their hosts, and in turn influences photosystem evolution

    Insertion Sequence Inversions Mediated by Ectopic Recombination between Terminal Inverted Repeats

    Get PDF
    Transposable elements are widely distributed and diverse in both eukaryotes and prokaryotes, as exemplified by DNA transposons. As a result, they represent a considerable source of genomic variation, for example through ectopic (i.e. non-allelic homologous) recombination events between transposable element copies, resulting in genomic rearrangements. Ectopic recombination may also take place between homologous sequences located within transposable element sequences. DNA transposons are typically bounded by terminal inverted repeats (TIRs). Ectopic recombination between TIRs is expected to result in DNA transposon inversions. However, such inversions have barely been documented. In this study, we report natural inversions of the most common prokaryotic DNA transposons: insertion sequences (IS). We identified natural TIR-TIR recombination-mediated inversions in 9% of IS insertion loci investigated in Wolbachia bacteria, which suggests that recombination between IS TIRs may be a quite common, albeit largely overlooked, source of genomic diversity in bacteria. We suggest that inversions may impede IS survival and proliferation in the host genome by altering transpositional activity. They may also alter genomic instability by modulating the outcome of ectopic recombination events between IS copies in various orientations. This study represents the first report of TIR-TIR recombination within bacterial IS elements and it thereby uncovers a novel mechanism of structural variation for this class of prokaryotic transposable elements

    PhiSiGns: an online tool to identify signature genes in phages and design PCR primers for examining phage diversity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Phages (viruses that infect bacteria) have gained significant attention because of their abundance, diversity and important ecological roles. However, the lack of a universal gene shared by all phages presents a challenge for phage identification and characterization, especially in environmental samples where it is difficult to culture phage-host systems. Homologous conserved genes (or "signature genes") present in groups of closely-related phages can be used to explore phage diversity and define evolutionary relationships amongst these phages. Bioinformatic approaches are needed to identify candidate signature genes and design PCR primers to amplify those genes from environmental samples; however, there is currently no existing computational tool that biologists can use for this purpose.</p> <p>Results</p> <p>Here we present PhiSiGns, a web-based and standalone application that performs a pairwise comparison of each gene present in user-selected phage genomes, identifies signature genes, generates alignments of these genes, and designs potential PCR primer pairs. PhiSiGns is available at (<url>http://www.phantome.org/phisigns/</url>; <url>http://phisigns.sourceforge.net/</url>) with a link to the source code. Here we describe the specifications of PhiSiGns and demonstrate its application with a case study.</p> <p>Conclusions</p> <p>PhiSiGns provides phage biologists with a user-friendly tool to identify signature genes and design PCR primers to amplify related genes from uncultured phages in environmental samples. This bioinformatics tool will facilitate the development of novel signature genes for use as molecular markers in studies of phage diversity, phylogeny, and evolution.</p

    Irradiation-Induced Deinococcus radiodurans Genome Fragmentation Triggers Transposition of a Single Resident Insertion Sequence

    Get PDF
    Stress-induced transposition is an attractive notion since it is potentially important in creating diversity to facilitate adaptation of the host to severe environmental conditions. One common major stress is radiation-induced DNA damage. Deinococcus radiodurans has an exceptional ability to withstand the lethal effects of DNA–damaging agents (ionizing radiation, UV light, and desiccation). High radiation levels result in genome fragmentation and reassembly in a process which generates significant amounts of single-stranded DNA. This capacity of D. radiodurans to withstand irradiation raises important questions concerning its response to radiation-induced mutagenic lesions. A recent study analyzed the mutational profile in the thyA gene following irradiation. The majority of thyA mutants resulted from transposition of one particular Insertion Sequence (IS), ISDra2, of the many different ISs in the D. radiodurans genome. ISDra2 is a member of a newly recognised class of ISs, the IS200/IS605 family of insertion sequences

    Evolutionary Trajectory of White Spot Syndrome Virus (WSSV) Genome Shrinkage during Spread in Asia

    Get PDF
    Background - White spot syndrome virus (WSSV) is the sole member of the novel Nimaviridae family, and the source of major economic problems in shrimp aquaculture. WSSV appears to have rapidly spread worldwide after the first reported outbreak in the early 1990s. Genomic deletions of various sizes occur at two loci in the WSSV genome, the ORF14/15 and ORF23/24 variable regions, and these have been used as molecular markers to study patterns of viral spread over space and time. We describe the dynamics underlying the process of WSSV genome shrinkage using empirical data and a simple mathematical model. Methodology/Principal Findings - We genotyped new WSSV isolates from five Asian countries, and analyzed this information together with published data. Genome size appears to stabilize over time, and deletion size in the ORF23/24 variable region was significantly related to the time of the first WSSV outbreak in a particular country. Parameter estimates derived from fitting a simple mathematical model of genome shrinkage to the data support a geometric progression (

    Identification of CRISPR and riboswitch related RNAs among novel noncoding RNAs of the euryarchaeon Pyrococcus abyssi

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Noncoding RNA (ncRNA) has been recognized as an important regulator of gene expression networks in Bacteria and Eucaryota. Little is known about ncRNA in thermococcal archaea except for the eukaryotic-like C/D and H/ACA modification guide RNAs.</p> <p>Results</p> <p>Using a combination of <it>in silico </it>and experimental approaches, we identified and characterized novel <it>P</it>. <it>abyssi </it>ncRNAs transcribed from 12 intergenic regions, ten of which are conserved throughout the Thermococcales. Several of them accumulate in the late-exponential phase of growth. Analysis of the genomic context and sequence conservation amongst related thermococcal species revealed two novel <it>P</it>. <it>abyssi </it>ncRNA families. The CRISPR family is comprised of crRNAs expressed from two of the four <it>P</it>. <it>abyssi </it>CRISPR cassettes. The 5'UTR derived family includes four conserved ncRNAs, two of which have features similar to known bacterial riboswitches. Several of the novel ncRNAs have sequence similarities to orphan OrfB transposase elements. Based on RNA secondary structure predictions and experimental results, we show that three of the twelve ncRNAs include Kink-turn RNA motifs, arguing for a biological role of these ncRNAs in the cell. Furthermore, our results show that several of the ncRNAs are subjected to processing events by enzymes that remain to be identified and characterized.</p> <p>Conclusions</p> <p>This work proposes a revised annotation of CRISPR loci in <it>P</it>. <it>abyssi </it>and expands our knowledge of ncRNAs in the Thermococcales, thus providing a starting point for studies needed to elucidate their biological function.</p

    Comparative ICE Genomics: Insights into the Evolution of the SXT/R391 Family of ICEs

    Get PDF
    Integrating and conjugative elements (ICEs) are one of the three principal types of self-transmissible mobile genetic elements in bacteria. ICEs, like plasmids, transfer via conjugation; but unlike plasmids and similar to many phages, these elements integrate into and replicate along with the host chromosome. Members of the SXT/R391 family of ICEs have been isolated from several species of gram-negative bacteria, including Vibrio cholerae, the cause of cholera, where they have been important vectors for disseminating genes conferring resistance to antibiotics. Here we developed a plasmid-based system to capture and isolate SXT/R391 ICEs for sequencing. Comparative analyses of the genomes of 13 SXT/R391 ICEs derived from diverse hosts and locations revealed that they contain 52 perfectly syntenic and nearly identical core genes that serve as a scaffold capable of mobilizing an array of variable DNA. Furthermore, selection pressure to maintain ICE mobility appears to have restricted insertions of variable DNA into intergenic sites that do not interrupt core functions. The variable genes confer diverse element-specific phenotypes, such as resistance to antibiotics. Functional analysis of a set of deletion mutants revealed that less than half of the conserved core genes are required for ICE mobility; the functions of most of the dispensable core genes are unknown. Several lines of evidence suggest that there has been extensive recombination between SXT/R391 ICEs, resulting in re-assortment of their respective variable gene content. Furthermore, our analyses suggest that there may be a network of phylogenetic relationships among sequences found in all types of mobile genetic elements
    corecore