2,853 research outputs found

    A statistical theory of the mean field

    Full text link
    A statistical theory of the mean field is developed. It is based on the proposition that the mean field can be obtained as an energy average. Moreover, it is assumed that the matrix elements of the residual interaction, obtained after the average interaction is removed, are random with the average value of zero. With these two assumptions one obtains explicit expressions for the mean field and the fluctuation away from the average. The fluctuation is expanded in terms of more and more complex excitations. Using the randomness of the matrix elements one can then obtain formulas for the contribution to the error from each class of complex excitations and a general condition for the convergence of the expansion is derived. It is to be emphasized that no conditions on the nature of the system being studied are made. Making some simplifying assumptions a schematic model is developed. This model is applied to the problem of nuclear matter. The model yields a measure of the strength of the effective interaction. It turns out to be three orders of magnitude less than that calculated using a potential which gives a binding energy of about -7 MeV/nucleon demonstrating the strong damping of the interaction strength induced by the averaging process.Comment: 25 pages, REVTeX, 4 eps figure

    Quasielastic K-nucleus scattering

    Get PDF
    Quasielastic K^+ - nucleus scattering data at q=290, 390 and 480 MeV/c are analyzed in a finite nucleus continuum random phase approximation framework, using a density-dependent particle-hole interaction. The reaction mechanism is consistently treated according to Glauber theory, keeping up to two-step inelastic processes. A good description of the data is achieved, also providing a useful constraint on the strength of the effective particle-hole interaction in the scalar-isoscalar channel at intermediate momentum transfers. We find no evidence for the increase in the effective number of nucleons participating in the reaction which has been reported in the literature.Comment: 21 pages, uses REVTeX and epsfig, 9 postscript figures; replaced version corrects a few minor errors in the tex

    Functional approach to the non-mesonic decay of Lambda-hypernuclei

    Full text link
    We present an evaluation of the non-mesonic decay widths for Lambda-hypernuclei (Lambda N --> NN, Lambda NN --> NNN) within the framework of the polarization propagator method. The full Lambda self-energy is evaluated microscopically in nuclear matter by using the functional approach, which supplies a theoretically well grounded approximation scheme for the classification of the relevant diagrams, according to the prescriptions of the bosonic loop expansion. We employ average Fermi momenta, suitably adapted to different mass number regions (medium-light, medium and heavy hypernuclei). Moreover, we study the dependence of the decay rates on the NN and Lambda-N short range correlations. With a proper choice of the parameters which control these correlations in the new approximation scheme, it is possible to reproduce the experimental decay widths for A > 10 hypernuclei.Comment: 25 pages, 8 figure

    Risk factors for obstructive sleep apnea syndrome in children: state of the art

    Get PDF
    The obstructive sleep apnea syndrome (OSAS) represents only part of a large group of pathologies of variable entity called respiratory sleep disorders (RSD) which include simple snoring and increased upper airway resistance syndrome (UARS). Although the etiopathogenesis of adult OSAS is well known, many aspects of this syndrome in children are still debated. Its prevalence is about 2% in children from 2 to 8 years of age, mostly related to the size of the upper airways adenoid tissue. Several risk factors linked to the development of OSAS are typical of the pediatric age. The object of this paper is to analyze the state of the art on this specific topic, discussing its implications in terms of diagnosis and management

    Meson-exchange currents and quasielastic predictions for charged-current neutrino-12C scattering in the superscaling approach

    Get PDF
    We evaluate and discuss the impact of meson-exchange currents (MECs) on charged-current quasielastic neutrino cross sections. We consider the nuclear transverse response arising from two-particle two-hole states excited by the action of electromagnetic, purely isovector meson-exchange currents in a fully relativistic framework based on the work by the Torino Collaboration [A. D. Pace, M. Nardi, W. M. Alberico, T. W. Donnelly, and A. Molinari, Nucl. Phys. A726, 303 (2003)]. An accurate parametrization of this MEC response as a function of the momentum and energy transfers involved is presented. Results of neutrino-nucleus cross sections using this MEC parametrization together with a recent scaling approach for the one-particle one-hole contributions (named SuSAv2) are compared with experimental data (MiniBooNE, MINERvA, NOMAD and T2K Collaborations).Comment: 16 pages, 19 figure

    Relativistic description of 3He(e,e'p)2H

    Get PDF
    The Relativistic Distorted-Wave Impulse Approximation is used to describe the 3^3He(e,epe,e^\prime p)2^2H process. We describe the 3^3He nucleus within the adiabatic hyperspherical expansion method with realistic nucleon-nucleon interactions. The overlap between the 3^3He and the deuteron wave functions can be accurately computed from a three-body calculation. The nucleons are described by solutions of the Dirac equation with scalar and vector (S-V) potentials. The wave function of the outgoing proton is obtained by solving the Dirac equation with a S-V optical potential fitted to elastic proton scattering data on the residual nucleus. Within this theoretical framework, we compute the cross section of the reaction and other observables like the transverse-longitudinal asymmetry, and compare them with the available experimental data measured at JLab.Comment: 4 pages, 3 figures. Proceedings of the 21st European Few Body Conference held in Salamanca (Spain) in August-September 201

    Delta excitation in K^+-nucleus collisions

    Get PDF
    We present calculations for \Delta excitation in the (K^+,K^+) reaction in nuclei. The background from quasielastic K^+ scattering in the \Delta region is also evaluated and shown to be quite small in some kinematical regions, so as to allow for a clean identification of the \Delta excitation strength. Nuclear effects tied to the \Delta renormalization in the nucleus are considered and the reaction is shown to provide new elements to enrich our knowledge of the \Delta properties in a nuclear medium.Comment: 11 pages, 6 figures, LaTe
    corecore