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Abstract

We present calculations for ∆ excitation in the (K+,K+) reaction
in nuclei. The background from quasielastic K+ scattering in the ∆
region is also evaluated and shown to be quite small in some kinematical
regions, so as to allow for a clean identification of the ∆ excitation
strength. Nuclear effects tied to the ∆ renormalization in the nucleus
are considered and the reaction is shown to provide new elements to
enrich our knowledge of the ∆ properties in a nuclear medium.

1 Introduction.

Delta excitation in nuclei has been a topic of permanent interest and it has been
studied in connection with pion nucleus collisions [1], photonuclear reactions
[2, 3, 4, 5], electron scattering on nuclei [6, 7, 8, 9] nuclear reactions induced
by protons or light nuclei [10, 11, 12, 13], neutrino induced reactions [14, 15],
etc.

In all these reactions the ∆ excitation proceeds in a different way: some-
times it is excited by a spin-isospin longitudinal source (pions), other times
by a transverse source (photons), and in other cases by a mixture of both.
Also, the range of energy and momentum used to excite the ∆ varies from
one case to another. Differences also appear in the regime of nuclear densi-
ties explored. In some reactions the ∆ is more neatly excited than in others
where background terms are important and, often, distortions of the strongly
interacting particles involved in the reaction lead to ∆ shapes that differ ap-
preciably from each other. All these differences, however, serve to enrich our
knowledge of the ∆ properties in a nuclear medium and of its coupling to the
nuclear components.
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Delta excitation in K+ nuclear reactions has not yet been explored and
clearly deserves some attention in view of its complementarity with respect to
other reactions mentioned above.

The K+ is a meson belonging, like the pion, to the octet of pseudoscalar
mesons. However it has peculiar features. In a sense, the small K+N cross
sections allow the kaons to explore inner regions of the nucleus, while pion
nuclear reactions are usually more peripheral. Another big difference is the
fact that the pion can be absorbed by one nucleon to give the ∆, while this
is not possible with the K+ due to its strangeness. One can also not excite
strange baryons (of negative strangeness) with the K+. Hence the K+ in this
case can only release some momentum and energy and keep traveling as a K+

(or K0). In this sense the ∆ excitation induced by K+ is similar to the proton
induced one in (p, p′) or (p, n) reactions, with the difference that in the K+

case the ∆ is excited only with a transverse source as we shall see.
The modifications of the ∆ properties in a nuclear medium have been the

object of much theoretical attention [16, 17, 18, 19, 20, 21]. Also early empirical
studies of pion-nucleus scattering lead to parametrizations of the ∆ spreading
potential [22], although caution has to be exerted to compare to theoretical
models because the empirical spreading potential incorporates elements which
in some theoretical models are part of the ∆h interaction [1].

Experiments on K+-nucleus scattering in the ∆ excitation region would
bring additional information by means of which to test our present under-
standing of the ∆ properties in nuclei and enrich it.

Experiment on inclusive K+-nucleus scattering are already available [23,
24], but they restrict themselves to the quasielastic excitation region. These
data have proved useful in order to learn about the strength of the residual
nuclear forces [25], since they have offered new information with respect to the
one obtained from electron scattering at low momentum transfers [26]. The
extension of this work to the ∆ excitation region, passing through the dip
region should be most useful. We should recall that the dip region has been
a permanent theoretical problem in inclusive electron scattering and only the
recent thorough many body calculation of ref. [9] has been able to provide a
fair description so far. Given the different dynamics in K+-nucleus scattering
with respect to electrons, we anticipate that this region should pose a challenge
to theory.

The elementary K+N → K∆ reaction has not been much studied but there
are data for K+p → KNπ in several charge channels which clearly indicate
the contribution from ∆ excitation [27, 28]. A recent study of this reaction
using the terms from chiral Lagrangians plus ∆ excitation, has been performed
in [29] and this provides us with the elementary information needed to tackle
the nuclear problem. The other important ingredient is the ∆ selfenergy in
the nuclear medium, which we take from ref. [18]. This selfenergy has been
tested in elastic pion nucleus scattering [30] and in quasielastic, single charge
exchange, double charge exchange and absorption of pions in nuclei [31]. It
has also been tested in photonuclear reactions [5] and electronuclear reactions

2



[9], and in all cases a good description of the data around the resonance region
was found. With these ingredients at hand we tackle now the K+ nucleus
inclusive scattering around the ∆ region.

2 The model.

Following the developments in photonuclear and electronuclear reactions [5, 9]
we evaluate the selfenergy of a K+ in nuclear matter and from there the cross
section in nuclei via the local density approximation.

∆

N

K

K+

+

ρ

Figure 1: ∆ excitation term mediated by ρ-exchange in the K+N → K+∆
reaction.

The elementary model of [29] for K+N → K+∆ is depicted in fig. 1. The
model consists of ρ exchange between the kaon and the baryonic components.
The two necessary ingredients are the K+K+ρ coupling and the ρN∆ coupling,
which we take from [29] where a fit to the data was performed. We have for
ρ0 → K+K−

− iδHρK+K− = −if̃ρǫ
µ
ρ [pK+ − pK−]µ (1)

and for ρ0N → ∆ the vertex function (~q ≡ ρ momentum)

− iδH̃ρ0N∆ =

√

2

3

f ∗

mπ

√

Cρ(~S
† × ~q) · ~ǫρ, (2)

where ǫµ
ρ is the polarization vector of the ρ and S† the spin transition operator

from spin 1/2 to 3/2. The coefficient
√

2/3 is an isospin coefficient. In addition
we use a monopole form factor for the ρN∆ vertex of the type

Fρ(q) =
Λ2 − m2

ρ

Λ2 − q2
, (3)

with Λ = 2 GeV. By fixing Cρ = 2 and using the standard value f ∗2/4π = 0.36,
the fit to the data in [29] gave a value f̃ρ = 4.2, 30% higher than the expected
SU(3) value f̃ρ = fρ/2 = 3.1 [32, 33]. This value, however, is imposed by our
choice of the ρN∆ coupling, where we rely again on SU(6) symmetry to relate
it to the empirical ρNN coupling used in [5].

3



K+

K+

K+ q

q

Figure 2: Selfenergy of K+ associated with an intermediate ∆h excitation.

Next step is to evaluate the K+ selfenergy in nuclear matter where the
intermediate state is K+ and a ∆h excitation. This selfenergy diagram is
depicted in fig. 2. By using the sum over ∆ spins,

∑

Ms

Si|Ms >< Ms|S†
j =

2

3
δij −

i

3
ǫijkσk, (4)

and taking into account that the three momenta of the ρN∆ coupling must
be taken in the ∆ CM frame, we can write in terms of the K+A Lab frame
momenta the kaon selfenergy as

Π(k) = i
∫ d4q

(2π)4
D2

ρ(q)(
f ∗

mπ

)2Cρf̃
2
ρŨ∆(q) (5)

×16

9
(
M

MI

)2(~k × ~k ′)2DK+(k − q)F 2
ρ (q),

where M is the nucleon mass, MI the invariant mass of the ∆, M2
I = p02

∆ −~p2
∆,

DK+ and Dρ are the K+ and ρ propagators respectively and Ũ∆(q) is the ∆h
Lindhard function with the normalization

Ũ∆(q) = ρ
1√

s − M∆ + iΓ(s)/2
, (6)

with ρ the nuclear density.
The step from Π(k) to a nuclear cross section is readily done by recalling

that the reaction probability per unit time is (2ωVopt ≡ Π)

Γ = −2ImVopt = − 1

ω
ImΠ(k), (7)

with ω the kaon energy. The probability of reaction per unit length is then
−ImΠ/k and hence the contribution of an element of volume to the cross
section is

dσ = −1

k
ImΠ(k)d3r. (8)
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The local density approximation comes now into action since Π(k) is a
function of ρ, the nuclear density, and then the cross section in a finite nucleus
becomes

σ = −1

k

∫

d3rImΠ(k, ρ(~r)). (9)

One must now evaluate ImΠ from eq. (5), which is readily done using
Cutkosky rules, placing on shell the intermediate states of the selfenergy dia-
gram. Technically on has

Π(k) → 2iImΠ (10)

Ũ∆(q) → 2iθ(q0)ImŨ∆(q)

DK+(k − q) → 2iθ(k0 − q0)ImDK+(k − q) =

2i
1

2ω(~k − ~q)
(−π)δ(k0 − q0 − ω(~k − ~q)). (11)

This allows us to write the K+ differential cross section as

dσ

dΩ′dω′
=

∫

d3r

(2π)3

k′

k

8

9
(
f ∗

mπ

)2Cρf̃
2
ρ (−)ImŨ∆(k − k′) (12)

×(
M

MI

)2(~k × ~k′)2Dρ(q)
2F 2

ρ (k − k),

with Dρ(q) = (q2 − m2
ρ)

−1.
So far we have not introduced ∆ selfenergies into the scheme. There is also

another physical effect that must be taken into account which is the distortion
of the K+ waves.

The ∆ selfenergy is readily introduced adding Σ∆ from ref. [18] to the ∆
mass in Ũ∆(q), including Pauli corrections to the ∆ width.

At the same time one can introduce corrections from the RPA propagation
of ∆h in the medium to account for the diagrams of the type depicted in fig.
3, where backward going ∆h excitations are omitted since they are negligible
in the ∆ region. This is also accomplished technically in a very easy way [5]
by substituting Σ∆ by

Σ∆ → Σ′
∆ = Σ∆ +

4

9
(
f ∗

mπ

)2V ′
T ρ, (13)

where V ′
T is the transverse part of the spin-isospin interaction,

V ′
T =

~q 2

q2 − m2
ρ

CρF
2
ρ (q) + g′, (14)

and g′, the Landau-Migdal parameter, is taken as g′ = 0.6.
The next correction is the distortion of the kaons. This requires some

thought because the K+ is distorted only by quasielastic collisions or conver-
sion into K0. In the latter case the K+ disappears after one collision (although
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Figure 3: Contribution to the K+ selfenergy from Tamm-Dancoff propagation
of ∆h states.

it can be generated again in a second collision), but in the quasielastic collisions
the K+ remains, although changing direction and energy. The conventional
use of a K+-nucleus optical potential removes from the K+ flux all events
where there is a quasielastic collision or K0 conversion. However, for small
angles of the emerging K+ this procedure is numerically accurate since the
contribution of two step processes, one quasielastic and the other one the N∆
tansition, is negligible at small angles. This has been found as a general rule in
hadronic collisions [34], in the ∆ excitation with the (3He, t) reaction [35, 36]
and in K+ quasielastic scattering [25], much closer to the problem we are
dealing with.

Since we are going to deal with small K+ angles, we shall then use distorted
waves for the K+ and the same assumption of small angles allows us to use
the eikonal approximation. In this case we must multiply the cross section of
eq. (11) by the distortion factor D(k, k′, ~r) given by

D(k, k′, ~r) = exp
(

∫ z

−∞
σ

(1)
KNρ(~b, z′)dz′ +

∫ ∞

z
σ

(2)
KNρ(~b, z′)dz′

)

, (15)

where ~b is the impact parameter corresponding to the point ~r and σ
(1)
KN , σ

(2)
KN

are the K+N cross sections of the incoming and outgoing K+ respectively,
which we take from [37].

Summarizing, our final formula for the cross section is given by eq. (11)
multiplying the expression by the distortion factor of eq. (14) and substituting
M∆ by M∆ + Σ′

∆ in Ũ∆(q) of eq. (6), with Σ′
∆ given by eq. (12).
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We present results in the next section.

3 Results and discussion.

Figure 4: Double differential cross sections for K+ scattering on 12C at 1
GeV/c and for three different angles. In the ∆ region results for the free ∆
(dot-dot-dot-dashed) and for the medium-modified ∆ (solid) are displayed.
The dashed line represents the total quasielastic background due to one-step
(solid) and two-step (dotted) collisions.

In fig. 4 we show differential cross sections for ∆ production for k =
1 GeV/c and three different angles for 12C. At the same time we calculate
the background from quasielastic K+ collisions in the same region, coming
from one and two steps, as discussed in [25]. Since our aim is to single out
kinematical regions where this background can be expected to be negligible,
these latter calculations have been performed with some simplifications, that
is the use of harmonic oscillator states (instead of Woods-Saxon), the omission
of the RPA corrections (which were found relevant only on the left hand side
of the quasielastic peak) and the neglect of the width of the ph states. We can
see that at θ = 100 there is a substantial background below the ∆ peak coming

7



from two-step quasielastic collisions. The figure also shows the effect of the ∆
selfenergy and the ∆h interaction in the transverse channel (addition of Σ′

∆

to M∆). There is a small shift of the peak to smaller excitation energies, a
moderate decrease of the strength at the ∆ peak and some increased strength
at lower excitation energies, which comes as a consequence of the ∆ coupling
to ph components, i. e., the decay mode of the ∆ in the nucleus, ∆N → NN .
We can see this strength more visible at bigger angles θ = 200, 300. For these
latter angles the quasielastic background is relatively smaller, which makes it
easier to identify the ∆ excitation strength.

Figure 5: As in Fig.4, but for K+ at 1.25 GeV/c.

In fig. 5 we show the same results for k = 1.25 GeV . The qualitative
features here are similar to those in fig. 4, only the relative strength of the ∆
excitation with respect to the quasielastic one is bigger.

In fig. 6 we show the results for k = 1.5 GeV . Once again the features
are similar to those in the former figures and the strength of the ∆ excitation
with respect to the quasielastic one is even higher.

At the angle θ = 30o the ∆ strength is bigger than the quasielastic one,
but the quasielastic contribution has a wide bump that induces an appreciable
background below the ∆ peak.
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Figure 6: As in Fig.4, but for K+ at 1.5 GeV/c. In the top panel, the amount
of ∆ strength in the medium due to pionic decay is also shown (heavy dots).

The effects of the ∆ selfenergy in the medium might look moderate by
comparing the solid and dash-dotted lines in figs. 4-6. However, the medium
effects are far more relevant than these two lines might indicate. Indeed, in
the case of a free ∆, the width is fully associated to the pionic decay of the
∆ while in the nuclear medium the width is associated to pion emission and
ph excitations and only part of the ∆ strenght of the figure goes into pion
emission. This can be made quantitative by recalling the form for the ∆
selfenergy from [18]. We have

ŨR,∆(q) = ρ (16)

× 1√
s − M∆ + iΓ̃/2 − ReΣ∆ − 4

9
( f∗

mπ

)2V ′
T ρ + iCQ( ρ

ρ0
)α + iCA2(

ρ
ρ0

)β + iCA3(
ρ
ρ0

)γ
,

where ŨR,∆ is the ∆h Lindhard function incorporating the selfenergy correc-
tions. In eq. (15) ρ0 is the normal nuclear matter density, Γ̃ is the Pauli
blocked width and CQ, CA2, CA3 are coefficients parametrized in [18] such that
their corresponding terms are associated to ∆ pionic decay (CQ), 2p 1h decay
(CA2) and 3p 2h decay (CA3).
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The strength of the ∆ decaying into pions is associated to Γ̃ and the CQ

term and we can write

ImŨR,∆(q) = −ρ (17)

×
Γ̃/2 + CQ( ρ

ρ0
)α + CA2(

ρ
ρ0

)β + CA3(
ρ
ρ0

)γ

(
√

s − M∆ − ReΣ∆ − 4
9
( f∗

mπ

)2V ′
T ρ)2 + ( Γ̃

2
+ CQ( ρ

ρ0
)α + CA2(

ρ
ρ0

)β + CA3(
ρ
ρ0

)γ)2
.

With this separation and bearing in mind the meaning of Cutkosky rules, if
we take the first two terms in the numerator of eq. (16), the resulting strength
will go into primary pion emission, while the one coming from the last two
terms will go into nucleon emission.

We have thus isolated the pionic decay content of the ∆ strength and show
it in fig. 6 at θ = 100. This strength is only about 70% of the corresponding
one for a free ∆ and the reduction is not due to the Pauli blocked width but
to the competition of the other ∆ decay channels. Indeed, in the absence of
ph ∆ decay channels, ImŨ ∼ Γ̃−1, and with a reduced Γ̃ width, the ∆ peak
would increase rather that the opposite, while at the same time the resonance
shape would become narrower.

We should also point out that this pionic content refers to the first step
of the reaction, before there is any final state interaction. Recall that in our
local density formula we are producing the pions in an element of volume
d3r. In their way out, part of these pions will be reabsorbed and will show
up as particle emission. In a nucleus like 12C, about 30% of these pions are
reabsorbed [15, 38], so that finally only about 1/2 of the original strength
assuming a free ∆ goes into pion emission.

It would be interesting to perform some coincidence measurements where
pions would be detected together with the K+.

We should also recall that the present reaction has other added advantages
over the (3He, t) reaction which has been thouroughly studied. Indeed, the
∆ information on that reaction is essentially limited to 00, since the cross
section falls by about two orders of magnitude when going to about 50 and
the shape of the ∆ resonance is essentially lost [39]. Here, on the contrary, the
cross section remains sizeable up to angles of about 300 and more. This offers
a wider spectrum of excitation energies and momenta by means of which to
study the ∆ excitation.

4 Conclusions.

We have evaluated the cross section for inclusive (K+, K+) scattering in nuclei
around the ∆ resonance region. These are the first evaluations for a reaction
on which there are no data yet, but they could be obtained as a continuation
of the recent experimental program in the quasielastic region [23, 24].

The cross sections obtained are sizable, and the mixture with the quasielas-
tic tail is sufficiently small in some regions to allow for a clean separation of the
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∆ excitation and the nuclear effects associated to it. The present study should
stimulate such measurements that surely will contribute to enrich our knowl-
edge of resonance renormalization in nuclei, which is a subject of continuous
debate.
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[36] E. Oset, P. Fernández de Córdoba, J. Nieves and M.J. Vicente Vacas,
Physica Scripta 48 (1993) 101.

[37] B.R. Martin, Nucl. Phys. B94 (1975) 413.

[38] R.C. Carrasco, E. Oset and L.L. Salcedo, Nucl. Phys. A541 (1992) 585.

[39] C. Gaarde, Annu. Rev. Nucl. Part. Sci. 41 (1991) 187.

13


