4,432 research outputs found
Restudy on Dark Matter Time-Evolution in the Littlest Higgs model with T-parity
Following previous study, in the Littlest Higgs model (LHM), the heavy photon
is supposed to be a possible dark matter candidate and its relic abundance of
the heavy photon is estimated in terms of the Boltzman-Lee-Weinberg
time-evolution equation. The effects of the T-parity violation is also
considered. Our calculations show that when Higgs mass taken to be 300
GeV and don't consider T-parity violation, only two narrow ranges
GeV and GeV are tolerable with the
current astrophysical observation and if GeV, there must at
least exist another species of heavy particle contributing to the cold dark
matter. As long as the T-parity can be violated, the heavy photon can decay
into regular standard model particles and would affect the dark matter
abundance in the universe, we discuss the constraint on the T-parity violation
parameter based on the present data. Direct detection prospects are also
discussed in some detail.Comment: 13 pages, 11 figures include
Adiponectin promotes pancreatic cancer progression by inhibiting apoptosis via the activation of AMPK/Sirt1/PGC-1α signaling
Adiponectin is an adipocyte-secreted adipokine with pleiotropic actions. Clinical evidence has shown that serum adiponectin levels are increased and that adiponectin can protect pancreatic beta cells against apoptosis, which suggests that adiponectin may play an anti-apoptotic role in pancreatic cancer (PC). Here, we investigated the effects of adiponectin on PC development and elucidated the underlying molecular mechanisms. Adiponectin deficiency markedly attenuated pancreatic tumorigenesis in vivo. We found that adiponectin significantly inhibited the apoptosis of both human and mouse pancreatic cancer cells via adipoR1, but not adipoR2. Furthermore, adiponectin can increase AMP-activated protein kinase (AMPK) phosphorylation and NAD-dependent deacetylase sirtuin-1 (Sirt1) of PC cells. Knockdown of AMPK or Sirt1 can increase the apoptosis in PC cells. AMPK up-regulated Sirt1, and Sirt1 can inversely phosphorylate AMPK. Further studies have shown that Sirt1 can deacetylate peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), which can increase the expression levels of mitochondrial genes. Thus, adiponectin exerts potent anti-apoptotic effects on PC cells via the activation of AMPK/Sirt1/PGC1α signaling. Finally, adiponectin can elevate β-catenin levels. Taken together, these novel findings reveal an unconventional role of adiponectin in promoting pancreatic cancers, and suggest that the effects of adiponectin on tumorigenesis are highly tissue-dependent.published_or_final_versio
VALES: IV. Exploring the transition of star formation efficiencies between normal and starburst galaxies using APEX/SEPIA Band-5 and ALMA at low redshift
In this work we present new APEX/SEPIA Band-5 observations targeting the CO
() emission line of 24 Herschel-detected galaxies at .
Combining this sample {with} our recent new Valpara\'iso ALMA Line Emission
Survey (VALES), we investigate the star formation efficiencies (SFEs =
SFR/) of galaxies at low redshift. We find the SFE of our sample
bridges the gap between normal star-forming galaxies and Ultra-Luminous
Infrared Galaxies (ULIRGs), which are thought to be triggered by different star
formation modes. Considering the as the SFR and the
ratio, our data show a continuous and smooth increment as a function of
infrared luminosity (or star formation rate) with a scatter about 0.5 dex,
instead of a steep jump with a bimodal behaviour. This result is due to the use
of a sample with a much larger range of sSFR/sSFR using LIRGs, with
luminosities covering the range between normal and ULIRGs. We conclude that the
main parameters controlling the scatter of the SFE in star-forming galaxies are
the systematic uncertainty of the conversion factor, the gas
fraction and physical size.Comment: 9pages, 7 figures, 1 table, accepted for publication in MNRA
Steps Toward Determination of the Size and Structure of the Broad-Line Region in Active Galactic Nuclei. XV. Long-Term Optical Monitoring of NGC 5548
We present the results of three years of ground-based observations of the
Seyfert 1 galaxy NGC 5548, which combined with previously reported data, yield
optical continuum and broad-line H-beta light curves for a total of eight
years. The light curves consist of over 800 points, with a typical spacing of a
few days between observations. During this eight-year period, the nuclear
continuum has varied by more than a factor of seven, and the H-beta emission
line has varied by a factor of nearly six. The H-beta emission line responds to
continuum variations with a time delay or lag of 10-20 days, the precise value
varying somewhat from year to year. We find some indications that the lag
varies with continuum flux in the sense that the lag is larger when the source
is brighter.Comment: 29 pages, 6 figures. Accepted for publication in ApJ (1999 Jan 10
Spatially resolved Spectro-photometry of M81: Age, Metallicity and Reddening Maps
In this paper, we present a multi-color photometric study of the nearby
spiral galaxy M81, using images obtained with the Beijing Astronomical
Observatory 60/90 cm Schmidt Telescope in 13 intermediate-band filters from
3800 to 10000{\AA}. The observations cover the whole area of M81 with a total
integration of 51 hours from February 1995 to February 1997. This provides a
multi-color map of M81 in pixels of 1\arcsec.7 \times 1\arcsec.7. Using
theoretical stellar population synthesis models, we demonstrate that some BATC
colors and color indices can be used to disentangle the age and metallicity
effect. We compare in detail the observed properties of M81 with the
predictions from population synthesis models and quantify the relative chemical
abundance, age and reddening distributions for different components of M81. We
find that the metallicity of M81 is about with no significant
difference over the whole galaxy. In contrast, an age gradient is found between
stellar populations of the central regions and of the bulge and disk regions of
M81: the stellar population in its central regions is older than 8 Gyr while
the disk stars are considerably younger, Gyr. We also give the
reddening distribution in M81. Some dust lanes are found in the galaxy bulge
region and the reddening in the outer disk is higher than that in the central
regions.Comment: Accepted for publication in AJ (May 2000 issue). 27 pages including 6
figures. Uses AASTeX aasms4 styl
A simulation study on the measurement of D0-D0bar mixing parameter y at BES-III
We established a method on measuring the \dzdzb mixing parameter for
BESIII experiment at the BEPCII collider. In this method, the doubly
tagged events, with one decays to
CP-eigenstates and the other decays semileptonically, are used to
reconstruct the signals. Since this analysis requires good separation,
a likelihood approach, which combines the , time of flight and the
electromagnetic shower detectors information, is used for particle
identification. We estimate the sensitivity of the measurement of to be
0.007 based on a fully simulated MC sample.Comment: 6 pages, 7 figure
How Many CMEs Have Flux Ropes? Deciphering the Signatures of Shocks, Flux Ropes, and Prominences in Coronagraph Observations of CMEs
We intend to provide a comprehensive answer to the question on whether all
Coronal Mass Ejections (CMEs) have flux rope structure. To achieve this, we
present a synthesis of the LASCO CME observations over the last sixteen years,
assisted by 3D MHD simulations of the breakout model, EUV and coronagraphic
observations from STEREO and SDO, and statistics from a revised LASCO CME
database. We argue that the bright loop often seen as the CME leading edge is
the result of pileup at the boundary of the erupting flux rope irrespective of
whether a cavity or, more generally, a 3-part CME can be identified. Based on
our previous work on white light shock detection and supported by the MHD
simulations, we identify a new type of morphology, the `two-front' morphology.
It consists of a faint front followed by diffuse emission and the bright
loop-like CME leading edge. We show that the faint front is caused by density
compression at a wave (or possibly shock) front driven by the CME. We also
present high-detailed multi-wavelength EUV observations that clarify the
relative positioning of the prominence at the bottom of a coronal cavity with
clear flux rope structure. Finally, we visually check the full LASCO CME
database for flux rope structures. In the process, we classify the events into
two clear flux rope classes (`3-part', `Loop'), jets and outflows (no clear
structure). We find that at least 40% of the observed CMEs have clear flux rope
structures. We propose a new definition for flux rope CMEs (FR-CMEs) as a
coherent magnetic, twist-carrying coronal structure with angular width of at
least 40 deg and able to reach beyond 10 Rsun which erupts on a time scale of a
few minutes to several hours. We conclude that flux ropes are a common
occurrence in CMEs and pose a challenge for future studies to identify CMEs
that are clearly not FR-CMEs.Comment: 26 pages, 9 figs, to be published in Solar Physics Topical Issue
"Flux Rope Structure of CMEs
Studies of di-jet survival and surface emission bias in Au+Au collisions via angular correlations with respect to back-to-back leading hadrons
We report first results from an analysis based on a new multi-hadron
correlation technique, exploring jet-medium interactions and di-jet surface
emission bias at RHIC. Pairs of back-to-back high transverse momentum hadrons
are used for triggers to study associated hadron distributions. In contrast
with two- and three-particle correlations with a single trigger with similar
kinematic selections, the associated hadron distribution of both trigger sides
reveals no modification in either relative pseudo-rapidity or relative
azimuthal angle from d+Au to central Au+Au collisions. We determine associated
hadron yields and spectra as well as production rates for such correlated
back-to-back triggers to gain additional insights on medium properties.Comment: By the STAR Collaboration. 6 pages, 2 figure
Search for Gamma Ray Bursts with the Argo-YBJ Detector in Scaler Mode
We report on the search for Gamma Ray Bursts (GRBs) in the energy range 1-100
GeV in coincidence with the prompt emission detected by satellites using the
Astrophysical Radiation with Ground-based Observatory at YangBaJing (ARGO-YBJ)
air shower detector. Thanks to its mountain location (Yangbajing, Tibet, P.R.
China, 4300 m a.s.l.), active surface (about 6700 m**2 of Resistive Plate
Chambers), and large field of view (about 2 sr, limited only by the atmospheric
absorption), the ARGO-YBJ air shower detector is particularly suitable for the
detection of unpredictable and short duration events such as GRBs. The search
is carried out using the "single particle technique", i.e. counting all the
particles hitting the detector without measurement of the energy and arrival
direction of the primary gamma rays.
Between 2004 December 17 and 2009 April 7, 81 GRBs detected by satellites
occurred within the field of view of ARGO-YBJ (zenith angle < 45 deg). It was
possible to examine 62 of these for >1 GeV counterpart in the ARGO-YBJ data
finding no statistically significant emission. With a lack of detected spectra
in this energy range fluence upper limits are profitable, especially when the
redshift is known and the correction for the extragalactic absorption can be
considered. The obtained fluence upper limits reach values as low as 10**{-5}
erg cm**{-2} in the 1-100 GeV energy region.
Besides this individual search for a higher energy counterpart, a statistical
study of the stack of all the GRBs both in time and in phase was made, looking
for a common feature in the GRB high energy emission. No significant signal has
been detected.Comment: accepted for publication in Ap
SU(3) and Nonet Breaking Effects in Induced by due to Anomaly
In this paper we study the effects of on in the Standard Model. We find that this interaction can induce
new sizeable SU(3) and U(3) nonet breaking effects in
transitions and therefore in due to large matrix elements
of from QCD
anomaly. These new effects play an important role in explaining the observed
value. We also study the effects of this interaction on the contribution to
.Comment: RevTex, 12 Pages, no figures. Version to be published in PR
- …
