268 research outputs found
Self-Adaptive Role-Based Access Control for Business Processes
© 2017 IEEE. We present an approach for dynamically reconfiguring the role-based access control (RBAC) of information systems running business processes, to protect them against insider threats. The new approach uses business process execution traces and stochastic model checking to establish confidence intervals for key measurable attributes of user behaviour, and thus to identify and adaptively demote users who misuse their access permissions maliciously or accidentally. We implemented and evaluated the approach and its policy specification formalism for a real IT support business process, showing their ability to express and apply a broad range of self-adaptive RBAC policies
Budget Feasible Mechanisms for Experimental Design
In the classical experimental design setting, an experimenter E has access to
a population of potential experiment subjects , each
associated with a vector of features . Conducting an experiment
with subject reveals an unknown value to E. E typically assumes
some hypothetical relationship between 's and 's, e.g., , and estimates from experiments, e.g., through linear
regression. As a proxy for various practical constraints, E may select only a
subset of subjects on which to conduct the experiment.
We initiate the study of budgeted mechanisms for experimental design. In this
setting, E has a budget . Each subject declares an associated cost to be part of the experiment, and must be paid at least her cost. In
particular, the Experimental Design Problem (EDP) is to find a set of
subjects for the experiment that maximizes V(S) = \log\det(I_d+\sum_{i\in
S}x_i\T{x_i}) under the constraint ; our objective
function corresponds to the information gain in parameter that is
learned through linear regression methods, and is related to the so-called
-optimality criterion. Further, the subjects are strategic and may lie about
their costs.
We present a deterministic, polynomial time, budget feasible mechanism
scheme, that is approximately truthful and yields a constant factor
approximation to EDP. In particular, for any small and , we can construct a (12.98, )-approximate mechanism that is
-truthful and runs in polynomial time in both and
. We also establish that no truthful,
budget-feasible algorithms is possible within a factor 2 approximation, and
show how to generalize our approach to a wide class of learning problems,
beyond linear regression
Software engineering techniques for the development of systems of systems
This paper investigates how existing software engineering techniques can be employed, adapted and integrated for the development of systems of systems. Starting from existing system-of-systems (SoS) studies, we identify computing paradigms and techniques that have the potential to help address the challenges associated with SoS development, and propose an SoS development framework that combines these techniques in a novel way. This framework addresses the development of a class of IT systems of systems characterised by high variability in the types of interactions between their component systems, and by relatively small numbers of such interactions. We describe how the framework supports the dynamic, automated generation of the system interfaces required to achieve these interactions, and present a case study illustrating the development of a data-centre SoS using the new framework
Thresholded Covering Algorithms for Robust and Max-Min Optimization
The general problem of robust optimization is this: one of several possible
scenarios will appear tomorrow, but things are more expensive tomorrow than
they are today. What should you anticipatorily buy today, so that the
worst-case cost (summed over both days) is minimized? Feige et al. and
Khandekar et al. considered the k-robust model where the possible outcomes
tomorrow are given by all demand-subsets of size k, and gave algorithms for the
set cover problem, and the Steiner tree and facility location problems in this
model, respectively.
In this paper, we give the following simple and intuitive template for
k-robust problems: "having built some anticipatory solution, if there exists a
single demand whose augmentation cost is larger than some threshold, augment
the anticipatory solution to cover this demand as well, and repeat". In this
paper we show that this template gives us improved approximation algorithms for
k-robust Steiner tree and set cover, and the first approximation algorithms for
k-robust Steiner forest, minimum-cut and multicut. All our approximation ratios
(except for multicut) are almost best possible.
As a by-product of our techniques, we also get algorithms for max-min
problems of the form: "given a covering problem instance, which k of the
elements are costliest to cover?".Comment: 24 page
An iterative decision-making scheme for Markov decision processes and its application to self-adaptive systems
Software is often governed by and thus adapts to phenomena that occur at runtime. Unlike traditional decision problems, where a decision-making model is determined for reasoning, the adaptation logic of such software is concerned with empirical data and is subject to practical constraints. We present an Iterative Decision-Making Scheme (IDMS) that infers both point and interval estimates for the undetermined transition probabilities in a Markov Decision Process (MDP) based on sampled data, and iteratively computes a confidently optimal scheduler from a given finite subset of schedulers. The most important feature of IDMS is the flexibility for adjusting the criterion of confident optimality and the sample size within the iteration, leading to a tradeoff between accuracy, data usage and computational overhead. We apply IDMS to an existing self-adaptation framework Rainbow and conduct a case study using a Rainbow system to demonstrate the flexibility of IDMS
Permissive Controller Synthesis for Probabilistic Systems
We propose novel controller synthesis techniques for probabilistic systems
modelled using stochastic two-player games: one player acts as a controller,
the second represents its environment, and probability is used to capture
uncertainty arising due to, for example, unreliable sensors or faulty system
components. Our aim is to generate robust controllers that are resilient to
unexpected system changes at runtime, and flexible enough to be adapted if
additional constraints need to be imposed. We develop a permissive controller
synthesis framework, which generates multi-strategies for the controller,
offering a choice of control actions to take at each time step. We formalise
the notion of permissivity using penalties, which are incurred each time a
possible control action is disallowed by a multi-strategy. Permissive
controller synthesis aims to generate a multi-strategy that minimises these
penalties, whilst guaranteeing the satisfaction of a specified system property.
We establish several key results about the optimality of multi-strategies and
the complexity of synthesising them. Then, we develop methods to perform
permissive controller synthesis using mixed integer linear programming and
illustrate their effectiveness on a selection of case studies
Adapting Quality Assurance to Adaptive Systems: The Scenario Coevolution Paradigm
From formal and practical analysis, we identify new challenges that
self-adaptive systems pose to the process of quality assurance. When tackling
these, the effort spent on various tasks in the process of software engineering
is naturally re-distributed. We claim that all steps related to testing need to
become self-adaptive to match the capabilities of the self-adaptive
system-under-test. Otherwise, the adaptive system's behavior might elude
traditional variants of quality assurance. We thus propose the paradigm of
scenario coevolution, which describes a pool of test cases and other
constraints on system behavior that evolves in parallel to the (in part
autonomous) development of behavior in the system-under-test. Scenario
coevolution offers a simple structure for the organization of adaptive testing
that allows for both human-controlled and autonomous intervention, supporting
software engineering for adaptive systems on a procedural as well as technical
level.Comment: 17 pages, published at ISOLA 201
Unveiling the intruder deformed 0 state in Si
The 0 state in Si has been populated at the {\sc Ganil/Lise3}
facility through the -decay of a newly discovered 1 isomer in
Al of 26(1) ms half-life. The simultaneous detection of pairs
allowed the determination of the excitation energy E(0)=2719(3) keV and
the half-life T=19.4(7) ns, from which an electric monopole strength of
(E0)=13.0(0.9) was deduced. The 2 state is
observed to decay both to the 0 ground state and to the newly observed
0 state (via a 607(2) keV transition) with a ratio
R(2)=1380(717). Gathering all
information, a weak mixing with the 0 and a large deformation parameter
of =0.29(4) are found for the 0 state, in good agreement with
shell model calculations using a new {\sc sdpf-u-mix} interaction allowing
\textit{np-nh} excitations across the N=20 shell gap.Comment: 5 pages, 3 figures, accepted for publication in Physical Review
Letter
- …