419 research outputs found

    A Continental Shelf Pump for CO2 on the Adélie Land Coast, East Antarctica

    Get PDF
    We quantify the transport of inorganic carbon from the continental shelf to the deep ocean in Dense Shelf Water (DSW) from the Mertz and Ninnis Polynyas along the AdĂ©lie Land coast in East Antarctica. For this purpose, observations of total dissolved inorganic carbon (TCO2) from two summer hydrographic surveys in 2015 and 2017 were paired with DSW volume transport estimates derived from a coupled ocean‐sea ice‐ice shelf model to examine the fate of inorganic carbon in DSW from AdĂ©lie Land. Transports indicate a net outflow of 227 ± 115 Tg C yr−1 with DSW in the postglacial calving configuration of the Mertz Polynya. The greatest outflow of inorganic carbon from the shelf region was delivered through the northern boundary across the AdĂ©lie and Mertz Sills, with an additional transport westward from the Mertz Polynya. Inorganic carbon in DSW is derived primarily from inflowing TCO2‐rich modified Circumpolar Deep Water; local processes (biological productivity, air‐sea exchange of CO2, and the addition of brine during sea ice formation) make much smaller contributions. This study proposes that DSW export serves as a continental shelf pump for CO2 and is a pathway to sequester inorganic carbon from the shallow Antarctic continental shelf to the abyssal ocean, removing CO2 from atmospheric exchange on the time scale of centuries

    On the superposition of mean advective and eddy-induced transports in global ocean heat and salt budgets

    Get PDF
    Ocean thermal expansion is a large contributor to observed sea level rise, which is expected to continue into the future. However, large uncertainties exist in sea level projections among climate models, partially due to intermodel differences in ocean heat uptake and redistribution of buoyancy. Here, the mechanisms of vertical ocean heat and salt transport are investigated in quasi-steady-state model simulations using the Australian Community Climate and Earth-System Simulator Ocean Model (ACCESS-OM2). New insights into the net effect of key physical processes are gained within the superresidual transport (SRT) framework. In this framework, vertical tracer transport is dominated by downward fluxes associated with the large-scale ocean circulation and upward fluxes induced by mesoscale eddies, with two distinct physical regimes. In the upper ocean, where high-latitude water masses are formed by mixed layer processes, through cooling or salinification, the SRT counteracts those processes by transporting heat and salt downward. In contrast, in the ocean interior, the SRT opposes dianeutral diffusion via upward fluxes of heat and salt, with about 60% of the vertical heat transport occurring in the Southern Ocean. Overall, the SRT is largely responsible for removing newly formed water masses from the mixed layer into the ocean interior, where they are eroded by dianeutral diffusion. Unlike the classical advective–diffusive balance, dianeutral diffusion is bottom intensified above rough bottom topography, allowing an overturning cell to develop in alignment with recent theories. Implications are discussed for understanding the role of vertical tracer transport on the simulation of ocean climate and sea level

    Sustainable Grazing on Saline Land in Western Australia - Multidisciplinary Research Linking Producers and Scientists

    Get PDF
    Dryland salinity is one of the most critical environmental issues challenging Western Australian farmers. Currently 10% of the cropping zone (1.8 million ha) is salt-affected and this is predicted to increase dramatically in the next 50 years (NLWRA, 2001). Animals grazing saline pasture systems represent the most likely large-scale opportunity for economic return from saline land in the short to medium term. To date, few farmers have invested in large-scale revegetation of saline land as the economic return from grazing has not been perceived to cover costs. Furthermore other benefits of saltland pasture systems, such as biodiversity, water use and improved quality of animal products have not been quantified

    The neodymium isotope fingerprint of Adélie coast bottom water

    Get PDF
    AdĂ©lie Land Bottom Water (ALBW), a variety of Antarctic Bottom Water formed off the AdĂ©lie Land coast of East Antarctica, ventilates the abyssal layers of the Australian sector of the Southern Ocean as well as the eastern Indian and Pacific Oceans. We present the first dissolved neodymium (Nd) isotope and concentration measurements for ALBW. The summertime signature of ALBW is characterized by ΔNd = −8.9, distinct from Ross Sea Bottom Water, and similar to Weddell Sea Bottom Water. AdĂ©lie Land Shelf Water, the precursor water mass for wintertime ALBW, features the least radiogenic Nd fingerprint observed around Antarctica to date (ΔNd = −9.9). Local geology around Antarctica is important in setting the chemical signature of individual varieties of Antarctic Bottom Water, evident from the shelf water signature, which should be considered in the absence of direct wintertime observations

    Protocol for PIT: a phase III trial of prophylactic irradiation of tracts in patients with malignant pleural mesothelioma following invasive chest wall intervention.

    Get PDF
    INTRODUCTION: Histological diagnosis of malignant mesothelioma requires an invasive procedure such as CT-guided needle biopsy, thoracoscopy, video-assisted thorascopic surgery (VATs) or thoracotomy. These invasive procedures encourage tumour cell seeding at the intervention site and patients can develop tumour nodules within the chest wall. In an effort to prevent nodules developing, it has been widespread practice across Europe to irradiate intervention sites postprocedure--a practice known as prophylactic irradiation of tracts (PIT). To date there has not been a suitably powered randomised trial to determine whether PIT is effective at reducing the risk of chest wall nodule development. METHODS AND ANALYSIS: In this multicentre phase III randomised controlled superiority trial, 374 patients who can receive radiotherapy within 42 days of a chest wall intervention will be randomised to receive PIT or no PIT. Patients will be randomised on a 1:1 basis. Radiotherapy in the PIT arm will be 21 Gy in three fractions. Subsequent chemotherapy is given at the clinicians' discretion. A reduction in the incidence of chest wall nodules from 15% to 5% in favour of radiotherapy 6 months after randomisation would be clinically significant. All patients will be followed up for up to 2 years with monthly telephone contact and at least four outpatient visits in the first year. ETHICS AND DISSEMINATION: PIT was approved by NRES Committee North West-Greater Manchester West (REC reference 12/NW/0249) and recruitment is currently on-going, the last patient is expected to be randomised by the end of 2015. The analysis of the primary end point, incidence of chest wall nodules 6 months after randomisation, is expected to be published in 2016 in a peer reviewed journal and results will also be presented at scientific meetings and summary results published online. A follow-up analysis is expected to be published in 2018. TRIAL REGISTRATION NUMBER: ISRCTN04240319; NCT01604005; Pre-results

    The response of the Antarctic Circumpolar Current to recent climate change

    Get PDF
    Observations show a significant intensification of the Southern Hemisphere westerlies, the prevailing winds between the latitudes of 30° and 60° S, over the past decades. A continuation of this intensification trend is projected by climate scenarios for the twenty-first century. The response of the Antarctic Circumpolar Current and the carbon sink in the Southern Ocean to changes in wind stress and surface buoyancy fluxes is under debate. Here we analyse the Argo network of profiling floats and historical oceanographic data to detect coherent hemispheric-scale warming and freshening trends that extend to depths of more than 1,000 m. The warming and freshening is partly related to changes in the properties of the water masses that make up the Antarctic Circumpolar Current, which are consistent with the anthropogenic changes in heat and freshwater fluxes suggested by climate models. However, we detect no increase in the tilt of the surfaces of equal density across the Antarctic Circumpolar Current, in contrast to coarse-resolution model studies. Our results imply that the transport in the Antarctic Circumpolar Current and meridional overturning in the Southern Ocean are insensitive to decadal changes in wind stress

    Jamming at Zero Temperature and Zero Applied Stress: the Epitome of Disorder

    Full text link
    We have studied how 2- and 3- dimensional systems made up of particles interacting with finite range, repulsive potentials jam (i.e., develop a yield stress in a disordered state) at zero temperature and applied stress. For each configuration, there is a unique jamming threshold, ϕc\phi_c, at which particles can no longer avoid each other and the bulk and shear moduli simultaneously become non-zero. The distribution of ϕc\phi_c values becomes narrower as the system size increases, so that essentially all configurations jam at the same ϕ\phi in the thermodynamic limit. This packing fraction corresponds to the previously measured value for random close-packing. In fact, our results provide a well-defined meaning for "random close-packing" in terms of the fraction of all phase space with inherent structures that jam. The jamming threshold, Point J, occurring at zero temperature and applied stress and at the random close-packing density, has properties reminiscent of an ordinary critical point. As Point J is approached from higher packing fractions, power-law scaling is found for many quantities. Moreover, near Point J, certain quantities no longer self-average, suggesting the existence of a length scale that diverges at J. However, Point J also differs from an ordinary critical point: the scaling exponents do not depend on dimension but do depend on the interparticle potential. Finally, as Point J is approached from high packing fractions, the density of vibrational states develops a large excess of low-frequency modes. All of these results suggest that Point J may control behavior in its vicinity-perhaps even at the glass transition.Comment: 21 pages, 20 figure

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
    • 

    corecore