441 research outputs found

    Status of research and development of vaccines for Streptococcus pyogenes.

    Get PDF
    Streptococcus pyogenes is an important global pathogen, causing considerable morbidity and mortality, especially in low and middle income countries where rheumatic heart disease and invasive infections are common. There is a number of promising vaccine candidates, most notably those based on the M protein, the key virulence factor for the bacterium. Vaccines against Streptococcus pyogenes are considered as impeded vaccines because of a number of crucial barriers to development. Considerable effort is needed by key players to bring current vaccine candidates through phase III clinical trials and there is a clear need to develop a roadmap for future development of current and new candidates

    Maternal Group B Streptococcal (GBS) Genital Tract Colonization at Term in Women who Have Asymptomatic GBS Bacteriuria

    Get PDF
    Objective: To determine the rate of positive group B streptococcus (GBS) cultures at 35–37 weeks gestation in women who have first trimester asymptomatic GBS bacteriuria. Methods: Pregnant women with asymptomatic first trimester GBS bacteriuria had genital cultures for GBS performed at 35–37 weeks gestational age. Serotyping was performed by the standard Lancefield capillary precipitin method. Results: Fifty-three women with positive urine cultures had genital cultures performed at 35–37 weeks. Sixteen of the 53 (30.2%; 95% confidence interval: 18.4–44.3%) third trimester vaginal cultures were positive for GBS. Five of eight (63%) of the women with typable urine serotypes had the same typable serotype in the third trimester genital culture. Conclusion: Genital tract cultures at 35–37 weeks for GBS correlate poorly with first trimester asymptomatic GBS bacteriuria. Recommendations for GBS prophylaxis in labor in women who have first trimester asymptomatic GBS bacteriuria should be investigated further and reconsidered

    Dichomitus squalens partially tailors its molecular responses to the composition of solid wood

    Get PDF
    White-rot fungi, such as Dichomitus squalens, degrade all wood components and inhabit mixed-wood forests containing both soft- and hardwood species. In this study, we evaluated how D. squalens responded to the compositional differences in softwood [guaiacyl (G) lignin and higher mannan content] and hardwood [syringyl/guaiacyl (S/G) lignin and higher xylan content] using semi-natural solid cultures. Spruce (softwood) and birch (hardwood) sticks were degraded by D. squalens as measured by oxidation of the lignins using 2D-NMR. The fungal response as measured by transcriptomics, proteomics and enzyme activities showed a partial tailoring to wood composition. Mannanolytic transcripts and proteins were more abundant in spruce cultures, while a proportionally higher xylanolytic activity was detected in birch cultures. Both wood types induced manganese peroxidases to a much higher level than laccases, but higher transcript and protein levels of the manganese peroxidases were observed on the G-lignin rich spruce. Overall, the molecular responses demonstrated a stronger adaptation to the spruce rather than birch composition, possibly because D. squalens is mainly found degrading softwoods in nature, which supports the ability of the solid wood cultures to reflect the natural environment.Peer reviewe

    Group B Streptococcus vaccine development: present status and future considerations, with emphasis on perspectives for low and middle income countries.

    Get PDF
    Globally, group B Streptococcus (GBS) remains the leading cause of sepsis and meningitis in young infants, with its greatest burden in the first 90 days of life. Intrapartum antibiotic prophylaxis (IAP) for women at risk of transmitting GBS to their newborns has been effective in reducing, but not eliminating, the young infant GBS disease burden in many high income countries. However, identification of women at risk and administration of IAP is very difficult in many low and middle income country (LMIC) settings, and is not possible for home deliveries. Immunization of pregnant women with a GBS vaccine represents an alternate pathway to protecting newborns from GBS disease, through the transplacental antibody transfer to the fetus in utero. This approach to prevent GBS disease in young infants is currently under development, and is approaching late stage clinical evaluation. This manuscript includes a review of the natural history of the disease, global disease burden estimates, diagnosis and existing control options in different settings, the biological rationale for a vaccine including previous supportive studies, analysis of current candidates in development, possible correlates of protection and current status of immunogenicity assays. Future potential vaccine development pathways to licensure and use in LMICs, trial design and implementation options are discussed, with the objective to provide a basis for reflection, rather than recommendations

    Review on catalytic cleavage of C-C inter-unit linkages in lignin model compounds: Towards lignin depolymerisation

    Get PDF
    Lignin depolymerisation has received considerable attention recently due to the pressing need to find sustainable alternatives to fossil fuel feedstock to produce chemicals and fuels. Two types of interunit linkages (C–C and C–O linkages) link several aromatic units in the structure of lignin. Between these two inter-unit linkages, the bond energies of C–C linkages are higher than that of C–O linkages, making them harder to break. However, for an efficient lignin depolymerisation, both types of inter-unit linkages have to be broken. This is more relevant because of the fact that many delignification processes tend to result in the formation of additional C–C inter-unit bonds. Here we review the strategies reported for the cleavage of C–C inter-unit linkages in lignin model compounds and lignin. Although a number of articles are available on the cleavage of C–O inter-unit linkages, reports on the selective cleavage of C–C inter-unit linkages are relatively less. Oxidative cleavage, hydrogenolysis, two-step redox-neutral process, microwave assisted cleavage, biocatalytic and photocatalytic methods have been reported for the breaking of C–C inter-unit linkages in lignin. Here we review all these methods in detail, focused only on the breaking of C–C linkages. The objective of this review is to motivate researchers to design new strategies to break this strong C–C inter-unit bonds to valorise lignins, technical lignins in particular

    Understanding the molecular determinants driving the immunological specificity of the protective pilus 2a backbone protein of Group B Streptococcus

    Get PDF
    The pilus 2a backbone protein (BP-2a) is one of the most structurally and functionally characterized components of a potential vaccine formulation against Group B Streptococcus. It is characterized by six main immunologically distinct allelic variants, each inducing variant-specific protection. To investigate the molecular determinants driving the variant immunogenic specificity of BP-2a, in terms of single residue contributions, we generated six monoclonal antibodies against a specific protein variant based on their capability to recognize the polymerized pili structure on the bacterial surface. Three mAbs were also able to induce complement-dependent opsonophagocytosis killing of live GBS and target the same linear epitope present in the structurally defined and immunodominant domain D3 of the protein. Molecular docking between the modelled scFv antibody sequences and the BP-2a crystal structure revealed the potential role at the binding interface of some non-conserved antigen residues. Mutagenesis analysis confirmed the necessity of a perfect balance between charges, size and polarity at the binding interface to obtain specific binding of mAbs to the protein antigen for a neutralizing response

    PerR Confers Phagocytic Killing Resistance and Allows Pharyngeal Colonization by Group A Streptococcus

    Get PDF
    The peroxide response transcriptional regulator, PerR, is thought to contribute to virulence of group A Streptococcus (GAS); however, the specific mechanism through which it enhances adaptation for survival in the human host remains unknown. Here, we identify a critical role of PerR-regulated gene expression in GAS phagocytosis resistance and in virulence during pharyngeal infection. Deletion of perR in M-type 3 strain 003Sm was associated with reduced resistance to phagocytic killing in human blood and by murine macrophages in vitro. The increased phagocytic killing of the perR mutant was abrogated in the presence of the general oxidative burst inhibitor diphenyleneiodonium chloride (DPI), a result that suggests PerR-dependent gene expression counteracts the phagocyte oxidative burst. Moreover, an isogenic perR mutant was severely attenuated in a baboon model of GAS pharyngitis. In competitive infection experiments, the perR mutant was cleared from two animals at 24 h and from four of five animals by day 14, in sharp contrast to wild-type bacteria that persisted in the same five animals for 28 to 42 d. GAS genomic microarrays were used to compare wild-type and perR mutant transcriptomes in order to characterize the PerR regulon of GAS. These studies identified 42 PerR-dependent loci, the majority of which had not been previously recognized. Surprisingly, a large proportion of these loci are involved in sugar utilization and transport, in addition to oxidative stress adaptive responses and virulence. This finding suggests a novel role for PerR in mediating sugar uptake and utilization that, together with phagocytic killing resistance, may contribute to GAS fitness in the infected host. We conclude that PerR controls expression of a diverse regulon that enhances GAS resistance to phagocytic killing and allows adaptation for survival in the pharynx
    • …
    corecore