9 research outputs found

    Nosocomial transmission of influenza: A retrospective cross-sectional study using next generation sequencing at a hospital in England (2012-2014).

    Get PDF
    BACKGROUND: The extent of transmission of influenza in hospital settings is poorly understood. Next generation sequencing may improve this by providing information on the genetic relatedness of viral strains. OBJECTIVES: We aimed to apply next generation sequencing to describe transmission in hospital and compare with methods based on routinely-collected data. METHODS: All influenza samples taken through routine care from patients at University College London Hospitals NHS Foundation Trust (September 2012 to March 2014) were included. We conducted Illumina sequencing and identified genetic clusters. We compared nosocomial transmission estimates defined using classical methods (based on time from admission to sample) and genetic clustering. We identified pairs of cases with space-time links and assessed genetic relatedness. RESULTS: We sequenced influenza sampled from 214 patients. There were 180 unique genetic strains, 16 (8.8%) of which seeded a new transmission chain. Nosocomial transmission was indicated for 32 (15.0%) cases using the classical definition and 34 (15.8%) based on genetic clustering. Of the 50 patients in a genetic cluster, 11 (22.0%) had known space-time links with other cases in the same cluster. Genetic distances between pairs of cases with space-time links were lower than for pairs without spatial links (P < .001). CONCLUSIONS: Genetic data confirmed that nosocomial transmission contributes significantly to the hospital burden of influenza and elucidated transmission chains. Prospective next generation sequencing could support outbreak investigations and monitor the impact of infection and control measures

    Proof-of-Principle for Immune Control of Global HIV-1 Reactivation In Vivo

    Get PDF
    Background. Emerging data relating to human immunodeficiency virus type 1 (HIV-1) cure suggest that vaccination to stimulate the host immune response, particularly cytotoxic cells, may be critical to clearing of reactivated HIV-1–infected cells. However, evidence for this approach in humans is lacking, and parameters required for a vaccine are unknown because opportunities to study HIV-1 reactivation are rare

    Hepatitis C virus quasispecies and pseudotype analysis from acute infection to chronicity in HIV-1 co-infected individuals

    Get PDF
    HIV-1 infected patients who acquire HCV infection have higher rates of chronicity and liver disease progression than patients with HCV mono-infection. Understanding early events in this pathogenic process is important. We applied single genome sequencing of the E1 to NS3 regions and viral pseudotype neutralization assays to explore the consequences of viral quasispecies evolution from pre-seroconversion to chronicity in four co-infected individuals (mean follow up 566 days). We observed that one to three founder viruses were transmitted. Relatively low viral sequence diversity, possibly related to an impaired immune response, due to HIV infection was observed in three patients. However, the fourth patient, after an early purifying selection displayed increasing E2 sequence evolution, possibly related to being on suppressive antiretroviral therapy. Viral pseudotypes generated from HCV variants showed relative resistance to neutralization by autologous plasma but not to plasma collected from later time points, confirming ongoing virus escape from antibody neutralization

    A Phylogenetic Analysis of Human Immunodeficiency Virus Type 1 Sequences in Kiev: Findings Among Key Populations

    Get PDF
    Background: The human immunodeficiency virus (HIV) epidemic in Ukraine has been driven by a rapid rise among people who inject drugs, but recent studies have shown an increase through sexual transmission. Methods: Protease and reverse transcriptase sequences from 876 new HIV diagnoses (April 2013–March 2015) in Kiev were linked to demographic data. We constructed phylogenetic trees for 794 subtype A1 and 64 subtype B sequences and identified factors associated with transmission clustering. Clusters were defined as ≥2 sequences, ≥80% local branch support, and maximum genetic distance of all sequence pairs in the cluster ≤2.5%. Recent infection was determined through the limiting antigen avidity enzyme immunoassay. Sequences were analyzed for transmitted drug resistance mutations. Results Thirty percent of subtype A1 and 66% of subtype B sequences clustered. Large clusters (maximum 11 sequences) contained mixed risk groups. In univariate analysis, clustering was significantly associated with subtype B compared to A1 (odds ratio [OR], 4.38 [95% confidence interval {CI}, 2.56–7.50]); risk group (OR, 5.65 [95% CI, 3.27–9.75]) for men who have sex with men compared to heterosexual males; recent, compared to long-standing, infection (OR, 2.72 [95% CI, 1.64–4.52]); reported sex work contact (OR, 1.93 [95% CI, 1.07–3.47]); and younger age groups compared with age ≥36 years (OR, 1.83 [95% CI, 1.10–3.05] for age ≤25 years). Females were associated with lower odds of clustering than heterosexual males (OR, 0.49 [95% CI, .31–.77]). In multivariate analysis, risk group, subtype, and age group were independently associated with clustering (P < .001, P = .007, and P = .033, respectively). Eighteen sequences (2.1%) indicated evidence of transmitted drug resistance. Conclusions Our findings suggest high levels of transmission and bridging between risk groups

    Osteoporosis and lactose intolerance

    Get PDF
    <p>A) Recombination pattern (according to jpHMM) of the URF_0206 (15228_1_49) discovered in the ICONIC dataset and the sequences L39106 and AF064699, prototypes of the recombinants CRF02_AG and CRF06_cpx, respectively. B) Bootscanning analysis of the URF_0206 performed using SimPlot and diagram showing the definitive recombination pattern.</p

    Proof-of-Principle for Immune Control of Global HIV-1 Reactivation In Vivo

    No full text
    Background. Emerging data relating to human immunodeficiency virus type 1 (HIV-1) cure suggest that vaccination to stimulate the host immune response, particularly cytotoxic cells, may be critical to clearing of reactivated HIV-1–infected cells. However, evidence for this approach in humans is lacking, and parameters required for a vaccine are unknown because opportunities to study HIV-1 reactivation are rare. Methods. We present observations from a HIV-1 elite controller, not treated with combination antiretroviral therapy, who experienced viral reactivation following treatment for myeloma with melphalan and autologous stem cell transplantation. Mathematical modeling was performed using a standard viral dynamic model. Enzyme-linked immunospot, intracellular cytokine staining, and tetramer staining were performed on peripheral blood mononuclear cells; in vitro CD8 T-cell–mediated control of virion production by autologous CD4 T cells was quantified; and neutralizing antibody titers were measured. Results. Viral rebound was measured at 28 000 copies/mL on day 13 post-transplant before rapid decay to <50 copies/mL in 2 distinct phases with t(1/2) of 0.71 days and 4.1 days. These kinetics were consistent with an expansion of cytotoxic effector cells and killing of productively infected CD4 T cells. Following transplantation, innate immune cells, including natural killer cells, recovered with virus rebound. However, most striking was the expansion of highly functional HIV-1–specific cytotoxic CD8 T cells, at numbers consistent with those applied in modeling, as virus control was regained. Conclusions. These observations provide evidence that the human immune response is capable of controlling coordinated global HIV-1 reactivation, remarkably with potency equivalent to combination antiretroviral therapy. These data will inform design of vaccines for use in HIV-1 curative interventions
    corecore