26 research outputs found

    Comparison of quality of life after stereotactic body radiotherapy and surgery for early-stage prostate cancer

    Get PDF
    Background: As the long-term efficacy of stereotactic body radiation therapy (SBRT) becomes established and other prostate cancer treatment approaches are refined and improved, examination of quality of life (QOL) following prostate cancer treatment is critical in driving both patient and clinical treatment decisions. We present the first study to compare QOL after SBRT and radical prostatectomy, with QOL assessed at approximately the same times pre- and post-treatment and using the same validated QOL instrument. Methods: Patients with clinically localized prostate cancer were treated with either radical prostatectomy (n = 123 Spanish patients) or SBRT (n = 216 American patients). QOL was assessed using the Expanded Prostate Cancer Index Composite (EPIC) grouped into urinary, sexual, and bowel domains. For comparison purposes, SBRT EPIC data at baseline, 3 weeks, 5, 11, 24, and 36 months were compared to surgery data at baseline, 1, 6, 12, 24,and 36 months. Differences in patient characteristics between the two groups were assessed using Chi-squared tests for categorical variables and t-tests for continuous variables. Generalized estimating equation (GEE) models were constructed for each EPIC scale to account for correlation among repeated measures and used to assess the effect of treatment on QOL. Results: The largest differences in QOL occurred in the first 1-6 months after treatment, with larger declines following surgery in urinary and sexual QOL as compared to SBRT, and a larger decline in bowel QOL following SBRT as compared to surgery. Long-term urinary and sexual QOL declines remained clinically significantly lower for surgery patients but not for SBRT patients. Conclusions: Overall, these results may have implications for patient and physician clinical decision making which are often influenced by QOL. These differences in sexual, urinary and bowel QOL should be closely considered in selecting the right treatment, especially in evaluating the value of non-invasive treatments, such as SBRT

    Metabolic recovery of Arabidopsis thaliana roots following cessation of oxidative stress

    Get PDF
    To cope with the various environmental stresses resulting in reactive oxygen species (ROS) production plant metabolism is known to be altered specifically under different stresses. After overcoming the stress the metabolism should be reconfigured to recover basal operation however knowledge concerning how this is achieved is cursory. To investigate the metabolic recovery of roots following oxidative stress, changes in metabolite abundance and carbon flow were analysed. Arabidopsis roots were treated by menadione to elicit oxidative stress. Roots were fed with 13C labelled glucose and the redistribution of isotope was determined in order to study carbon flow. The label redistribution through many pathways such as glycolysis, the tricarboxylic acid (TCA) cycle and amino acid metabolism were reduced under oxidative stress. After menadione removal many of the stress-related changes reverted back to basal levels. Decreases in amounts of hexose phosphates, malate, 2-oxoglutarate, glutamate and aspartate were fully recovered or even increased to above the control level. However, some metabolites such as pentose phosphates and citrate did not recover but maintained their levels or even increased further. The alteration in label redistribution largely correlated with that in metabolite abundance. Glycolytic carbon flow reverted to the control level only 18 h after menadione removal although the TCA cycle and some amino acids such as aspartate and glutamate took longer to recover. Taken together, plant root metabolism was demonstrated to be able to overcome menadione-induced oxidative stress with the differential time period required by independent pathways suggestive of the involvement of pathway specific regulatory processes

    A Deubiquitylating Complex Required for Neosynthesis of a Yeast Mitochondrial ATP Synthase Subunit

    Get PDF
    The ubiquitin system is known to be involved in maintaining the integrity of mitochondria, but little is known about the role of deubiquitylating (DUB) enzymes in such functions. Budding yeast cells deleted for UBP13 and its close homolog UBP9 displayed a high incidence of petite colonies and slow respiratory growth at 37°C. Both Ubp9 and Ubp13 interacted directly with Duf1 (DUB-associated factor 1), a WD40 motif-containing protein. Duf1 activates the DUB activity of recombinant Ubp9 and Ubp13 in vitro and deletion of DUF1 resulted in the same respiratory phenotype as the deletion of both UBP9 and UBP13. We show that the mitochondrial defects of these mutants resulted from a strong decrease at 37°C in the de novo biosynthesis of Atp9, a membrane-bound component of ATP synthase encoded by mitochondrial DNA. The defect appears at the level of ATP9 mRNA translation, while its maturation remained unchanged in the mutants. This study describes a new role of the ubiquitin system in mitochondrial biogenesis

    Evidence for Loss of a Partial Flagellar Glycolytic Pathway during Trypanosomatid Evolution

    Get PDF
    Classically viewed as a cytosolic pathway, glycolysis is increasingly recognized as a metabolic pathway exhibiting surprisingly wide-ranging variations in compartmentalization within eukaryotic cells. Trypanosomatid parasites provide an extreme view of glycolytic enzyme compartmentalization as several glycolytic enzymes are found exclusively in peroxisomes. Here, we characterize Trypanosoma brucei flagellar proteins resembling glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoglycerate kinase (PGK): we show the latter associates with the axoneme and the former is a novel paraflagellar rod component. The paraflagellar rod is an essential extra-axonemal structure in trypanosomes and related protists, providing a platform into which metabolic activities can be built. Yet, bioinformatics interrogation and structural modelling indicate neither the trypanosome PGK-like nor the GAPDH-like protein is catalytically active. Orthologs are present in a free-living ancestor of the trypanosomatids, Bodo saltans: the PGK-like protein from B. saltans also lacks key catalytic residues, but its GAPDH-like protein is predicted to be catalytically competent. We discuss the likelihood that the trypanosome GAPDH-like and PGK-like proteins constitute molecular evidence for evolutionary loss of a flagellar glycolytic pathway, either as a consequence of niche adaptation or the re-localization of glycolytic enzymes to peroxisomes and the extensive changes to glycolytic flux regulation that accompanied this re-localization. Evidence indicating loss of localized ATP provision via glycolytic enzymes therefore provides a novel contribution to an emerging theme of hidden diversity with respect to compartmentalization of the ubiquitous glycolytic pathway in eukaryotes. A possibility that trypanosome GAPDH-like protein additionally represents a degenerate example of a moonlighting protein is also discussed

    Robotic and laparoscopic high extended pelvic lymph node dissection during radical cystectomy: technique and outcomes

    No full text
    With the increasing use of laparoscopic and robotic radical cystectomy (RC), there are perceived concerns about the adequacy of lymph node dissection (LND)
    corecore