1,605 research outputs found
Comment on ``High Temperature Fermion Propagator -- Resummation and Gauge Dependence of the Damping Rate''
Baier et al. have reported the damping rate of long-wavelength fermionic
excitations in high-temperature QED and QCD to be gauge-fixing-dependent even
within the resummation scheme due to Braaten and Pisarski. It is shown that
this problem is caused by the singular nature of the on-shell expansion of the
fermion self-energy in the infra-red. Its regularization reveals that the
alleged gauge dependence pertains to the residue rather than the pole of the
fermion propagator, so that in particular the damping constant comes out
gauge-independent, as it should.Comment: 5 page
Gauge Dependence of the Resummed Thermal Gluon Self Energy
The gauge dependence of the hot gluon self energy is examined in the context
of Pisarski's method for resumming hard thermal loops. Braaten and Pisarski
have used the Ward identities satisfied by the hard corrections to the n-point
functions to argue the gauge fixing independence of the leading order resummed
QCD plasma damping rate in covariant and strict Coulomb gauges. We extend their
analysis to include all linear gauges that preserve rotational invariance and
display explicitly the conditions required for gauge fixing independence. It is
shown that in covariant gauges the resummed damping constant is gauge fixing
independent only if an infrared regulator is explicitly maintained throughout
the calculation.Comment: 29 pages, report BI-TP 92/19, LPTHE-Orsay 92/32, WIN-TH-92/02 (June
1992
Searching for mesons in the ATLAS experiment at LHC
We discuss the feasibility of the observation of the signal from mesons
in the ATLAS experiment of the LHC collider at a luminosity of ${\approx}\
10^{33}^{-2}^{-1}B_c{\rightarrow}J/\psi \piJ/\psi{\rightarrow}\mu^+\mu^-B_c40B_c$ mass could be achieved
after one year of running.Comment: Latex,7 pages including 3 uuencoded Postscript figures appended at
the end of the latex fil
Langevin equations with multiplicative noise: resolution of time discretization ambiguities for equilibrium systems
A Langevin equation with multiplicative noise is an equation schematically of
the form dq/dt = -F(q) + e(q) xi, where e(q) xi is Gaussian white noise whose
amplitude e(q) depends on q itself. Such equations are ambiguous, and depend on
the details of one's convention for discretizing time when solving them. I show
that these ambiguities are uniquely resolved if the system has a known
equilibrium distribution exp[-V(q)/T] and if, at some more fundamental level,
the physics of the system is reversible. I also discuss a simple example where
this happens, which is the small frequency limit of Newton's equation d^2q/dt^2
+ e^2(q) dq/dt = - grad V(q) + e^{-1}(q) xi with noise and a q-dependent
damping term. The resolution does not correspond to simply interpreting naive
continuum equations in a standard convention, such as Stratanovich or Ito. [One
application of Langevin equations with multiplicative noise is to certain
effective theories for hot, non-Abelian plasmas.]Comment: 15 pages, 2 figures [further corrections to Appendix A
Damping Rate of a Yukawa Fermion at Finite Temperature
The damping of a massless fermion coupled to a massless scalar particle at
finite temperature is considered using the Braaten-Pisarski resummation
technique. First the hard thermal loop diagrams of this theory are extracted
and effective Green's functions are constructed. Using these effective Green's
functions the damping rate of a soft Yukawa fermion is calculated. This rate
provides the most simple example for the damping of a soft particle. To leading
order it is proportional to , whereas the one of a hard fermion is of
higher order.Comment: 5 pages, REVTEX, postscript figures appended, UGI-94-0
Comment on ``Damping of energetic gluons and quarks in high-temperature QCD''
Burgess and Marini have recently pointed out that the leading contribution to
the damping rate of energetic gluons and quarks in the QCD plasma, given by
, can be obtained by simple arguments obviating the need
of a fully resummed perturbation theory as developed by Braaten and Pisarski.
Their calculation confirmed previous results of Braaten and Pisarski, but
contradicted those proposed by Lebedev and Smilga. While agreeing with the
general considerations made by Burgess and Marini, I correct their actual
calculation of the damping rates, which is based on a wrong expression for the
static limit of the resummed gluon propagator. The effect of this, however,
turns out to be cancelled fortuitously by another mistake, so as to leave all
of their conclusions unchanged. I also verify the gauge independence of the
results, which in the corrected calculation arises in a less obvious manner.Comment: 5 page
Hard Thermal Loops, Gauged WZNW Action and the Energy of Hot Quark-Gluon Plasma
The generating functional for hard thermal loops in QCD is rewritten in terms
of a gauged WZNW action by introducing an auxiliary field. This shows in a
simple way that the contribution of hard thermal loops to the energy of the
quark-gluon plasma is positive.Comment: 9 pages, CU-TP 60
Damping rates for moving particles in hot QCD
Using a program of perturbative resummation I compute the damping rates for
fields at nonzero spatial momentum to leading order in weak coupling in hot
. Sum rules for spectral densities are used to simplify the calculations.
For massless fields the damping rate has an apparent logarithmic divergence in
the infrared limit, which is cut off by the screening of static magnetic fields
(``magnetic mass''). This demonstrates how at high temperature even
perturbative quantities are sensitive to nonperturbative phenomenon.Comment: LaTeX file, 24 pages, BNL-P-1/92 (December, 1992
Color-Octet Fragmentation and the psi' Surplus at the Tevatron
The production rate of prompt 's at large transverse momentum at the
Tevatron is larger than theoretical expectations by about a factor of 30. As a
solution to this puzzle, we suggest that the dominant production
mechanism is the fragmentation of a gluon into a pair in a pointlike
color-octet S-wave state, which subsequently evolves nonperturbatively into a
plus light hadrons. The contribution to the fragmentation function from
this process is enhanced by a short-distance factor of relative
to the conventional color-singlet contribution. This may compensate for the
suppression by , where is the relative momentum of the charm quark in
the . If this is indeed the dominant production mechanism at large
, then the prompt 's that are observed at the Tevatron should
almost always be associated with a jet of light hadrons.Comment: 9 pages, LaTe
Damping Rate of a Hard Photon in a Relativistic Plasma
The damping rate of a hard photon in a hot relativistic QED and QCD plasma is
calculated using the resummation technique by Braaten and Pisarski.Comment: 4 pages, REVTeX, 2 figures (not included), UGI-MT-94-0
- …