23 research outputs found
A Bacillus megaterium plasmid system for the production, export, and one-step purification of affinity-tagged heterologous levansucrase from growth medium
A multiple vector system for the production and export of recombinant affinity-tagged proteins in Bacillus megaterium was developed. Up to 1 mg/liter of a His(6)-tagged or Strep-tagged Lactobacillus reuteri levansucrase was directed into the growth medium, using the B. megaterium esterase LipA signal peptide, and recovered by one-step affinity chromatography
Towards recombinantly produced milk proteins: Physicochemical and emulsifying properties of engineered whey protein beta-lactoglobulin variants
DFG, 273937032, SPP 1934: Dispersitäts-, Struktur- und Phasenänderungen von Proteinen und biologischen Agglomeraten in biotechnologischen ProzessenBMBF, 031B0222, Basistechnologie Nachwuchsgruppe "Multiskalige Modellierung und Modifikation von Multienzymkomplexen als Basistechnologie für zellfreie Reaktionskaskaden" (II
An Ultra-Fast Metabolite Prediction Algorithm
Small molecules are central to all biological processes and metabolomics becoming an increasingly important discovery tool. Robust, accurate and efficient experimental approaches are critical to supporting and validating predictions from post-genomic studies. To accurately predict metabolic changes and dynamics, experimental design requires multiple biological replicates and usually multiple treatments. Mass spectra from each run are processed and metabolite features are extracted. Because of machine resolution and variation in replicates, one metabolite may have different implementations (values) of retention time and mass in different spectra. A major impediment to effectively utilizing untargeted metabolomics data is ensuring accurate spectral alignment, enabling precise recognition of features (metabolites) across spectra. Existing alignment algorithms use either a global merge strategy or a local merge strategy. The former delivers an accurate alignment, but lacks efficiency. The latter is fast, but often inaccurate. Here we document a new algorithm employing a technique known as quicksort. The results on both simulated data and real data show that this algorithm provides a dramatic increase in alignment speed and also improves alignment accuracy
Polar fixation of plasmids during recombinant protein production in <em>Bacillus megaterium</em> results in population heterogeneity.
During the last two decades, Bacillus megaterium has been systematically developed for the gram-per-liter scale production of recombinant proteins. The plasmid-based expression systems employed use a xylose-controlled promoter. Protein production analyses at the single cell level using green fluorescent protein as a model product revealed a cell culture heterogeneity characterized by a significant proportion of low-producing bacteria. Due to the enormous size of B. megaterium, such bistable behavior seen in subpopulations was readily analyzed by time-lapse microscopy and flow cytometry. Cell culture heterogeneity was not simply caused by plasmid loss: Instead, an asymmetric distribution of plasmids during cell division was detected during the exponential growth phase. Multi-copy plasmids are generally randomly distributed between daughter cells. However, in vivo and in vitro experiments demonstrated that under conditions of strong protein production, plasmids are retained at one of the cell poles. Furthermore, it was found that cells with accumulated plasmids and high protein production ceased cell division. As a consequence, the overall protein production of the culture was mainly achieved by the subpopulation with a sufficient plasmid copy number. Based on our experimental data, we propose a model whereby the distribution of multi-copy plasmids is controlled by polar fixation under protein production conditions. Thereby, cell lines with fluctuating plasmid abundance arise, which results in population heterogeneity. Our results provide initial insights into the mechanism of cellular heterogeneity during plasmid-based recombinant protein production in a Bacillus species
Genome Sequences of the Biotechnologically Important Bacillus megaterium Strains QM B1551 and DSM319 â–żâ€
Bacillus megaterium is deep-rooted in the Bacillus phylogeny, making it an evolutionarily key species and of particular importance in understanding genome evolution, dynamics, and plasticity in the bacilli. B. megaterium is a commercially available, nonpathogenic host for the biotechnological production of several substances, including vitamin B12, penicillin acylase, and amylases. Here, we report the analysis of the first complete genome sequences of two important B. megaterium strains, the plasmidless strain DSM319 and QM B1551, which harbors seven indigenous plasmids. The 5.1-Mbp chromosome carries approximately 5,300 genes, while QM B1551 plasmids represent a combined 417 kb and 523 genes, one of the largest plasmid arrays sequenced in a single bacterial strain. We have documented extensive gene transfer between the plasmids and the chromosome. Each strain carries roughly 300 strain-specific chromosomal genes that account for differences in their experimentally confirmed phenotypes. B. megaterium is able to synthesize vitamin B12 through an oxygen-independent adenosylcobalamin pathway, which together with other key energetic and metabolic pathways has now been fully reconstructed. Other novel genes include a second ftsZ gene, which may be responsible for the large cell size of members of this species, as well as genes for gas vesicles, a second β-galactosidase gene, and most but not all of the genes needed for genetic competence. Comprehensive analyses of the global Bacillus gene pool showed that only an asymmetric region around the origin of replication was syntenic across the genus. This appears to be a characteristic feature of the Bacillus spp. genome architecture and may be key to their sporulating lifestyle
Moonlighting Arabidopsis molybdate transporter 2 family and GSH-complex formation facilitate molybdenum homeostasis
Molybdenum (Mo) as essential micronutrient for plants, acts as active component of molybdenum cofactor (Moco). Core metabolic processes like nitrate assimilation or abscisic-acid biosynthesis rely on Moco-dependent enzymes. Although a family of molybdate transport proteins (MOT1) is known to date in Arabidopsis, molybdate homeostasis remained unclear. Here we report a second family of molybdate transporters (MOT2) playing key roles in molybdate distribution and usage. KO phenotype-analyses, cellular and organ-specific localization, and connection to Moco-biosynthesis enzymes via protein-protein interaction suggest involvement in cellular import of molybdate in leaves and reproductive organs. Furthermore, we detected a glutathione-molybdate complex, which reveals how vacuolar storage is maintained. A putative Golgi S-adenosyl-methionine transport function was reported recently for the MOT2-family. Here, we propose a moonlighting function, since clear evidence of molybdate transport was found in a yeast-system. Our characterization of the MOT2-family and the detection of a glutathione-molybdate complex unveil the plant-wide way of molybdate