126 research outputs found
Acute effects of partial-body cryotherapy on isometric strength: maximum handgrip strength evaluation
The aim of the study was to evaluate the influence of a single partial-body cryotherapy (PBC) session on the maximum handgrip strength (JAMAR Hydraulic Hand dynamometer). Two hundred healthy adults were randomized into a PBC group and a control group (50 men and 50 women in each group). After the initial handgrip strength test (T0), the experimental group performed a 150-second session of PBC (temperature range between -130 and 2160 degrees C), whereas the control group stayed in a thermo neutral room (22.0 +/- 0.5 degrees C). Immediately after, both groups performed another handgrip strength test (T1). Data underlined that both groups showed an increase in handgrip strength values, especially the experimental group (Control: T0 = 39.48 kg, T1 = 40.01 kg; PBC: T0 = 39.61 kg, T1 = 41.34 kg). The analysis also reported a statistical effect related to gender (F = 491.99, P <= 0.05), with women showing lower handgrip strength values compared with men (women = 30.43 kg, men = 52.27 kg). Findings provide the first evidence that a single session of PBC leads to the improvement of muscle strength in healthy people. The results of the study imply that PBC could be performed also before a training session or a sport competition, to increase hand isometric strength
Carbon K-shell Photo Ionization of CO: Molecular frame angular Distributions of normal and conjugate shakeup Satellites
We have measured the molecular frame angular distributions of photoelectrons
emitted from the Carbon K shell of fixed-in-space CO molecules for the case of
simultaneous excitation of the remaining molecular ion. Normal and conjugate
shake up states are observed. Photo electrons belonging to normal \Sigma
-satellite lines show an angular distribution resembling that observed for the
main photoline at the same electron energy. Surprisingly a similar shape is
found for conjugate shake up states with \Pi -symmetry. In our data we identify
shake rather than electron scattering (PEVE) as the mechanism producing the
conjugate lines. The angular distributions clearly show the presence of a
\Sigma -shape resonance for all of the satellite lines.Comment: 8 pages, 2 figure
Performance assessment of ontology matching systems for FAIR data
© The Author(s). 2022 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.Background: Ontology matching should contribute to the interoperability aspect of FAIR data (Findable, Accessible, Interoperable, and Reusable). Multiple data sources can use different ontologies for annotating their data and, thus, creating the need for dynamic ontology matching services. In this experimental study, we assessed the performance of ontology matching systems in the context of a real-life application from the rare disease domain. Additionally, we present a method for analyzing top-level classes to improve precision.
Results: We included three ontologies (NCIt, SNOMED CT, ORDO) and three matching systems (AgreementMakerLight 2.0, FCA-Map, LogMap 2.0). We evaluated the performance of the matching systems against reference alignments from BioPortal and the Unified Medical Language System Metathesaurus (UMLS). Then, we analyzed the top-level ancestors of matched classes, to detect incorrect mappings without consulting a reference alignment. To detect such incorrect mappings, we manually matched semantically equivalent top-level classes of ontology pairs. AgreementMakerLight 2.0, FCA-Map, and LogMap 2.0 had F1-scores of 0.55, 0.46, 0.55 for BioPortal and 0.66, 0.53, 0.58 for the UMLS respectively. Using vote-based consensus alignments increased performance across the board. Evaluation with manually created top-level hierarchy mappings revealed that on average 90% of the mappings’ classes belonged to top-level classes that matched.
Conclusions: Our findings show that the included ontology matching systems automatically produced mappings that were modestly accurate according to our evaluation. The hierarchical analysis of mappings seems promising when no reference alignments are available. All in all, the systems show potential to be implemented as part of an ontology matching service for querying FAIR data. Future research should focus on developing methods for the evaluation of mappings used in such mapping services, leading to their implementation in a FAIR data ecosystem
High-level integration of murine intestinal transcriptomics data highlights the importance of the complement system in mucosal homeostasis.
BACKGROUND: The mammalian intestine is a complex biological system that exhibits functional plasticity in its response to diverse stimuli to maintain homeostasis. To improve our understanding of this plasticity, we performed a high-level data integration of 14 whole-genome transcriptomics datasets from samples of intestinal mouse mucosa. We used the tool Centrality based Pathway Analysis (CePa), along with information from the Reactome database. RESULTS: The results show an integrated response of the mouse intestinal mucosa to challenges with agents introduced orally that were expected to perturb homeostasis. We observed that a common set of pathways respond to different stimuli, of which the most reactive was the Regulation of Complement Cascade pathway. Altered expression of the Regulation of Complement Cascade pathway was verified in mouse organoids challenged with different stimuli in vitro. CONCLUSIONS: Results of the integrated transcriptomics analysis and data driven experiment suggest an important role of epithelial production of complement and host complement defence factors in the maintenance of homeostasis
Estimating food production in an urban landscape
There is increasing interest in urban food production for reasons of food security, environmental sustainability, social and health benefits. In developed nations urban food growing is largely informal and localised, in gardens, allotments and public spaces, but we know little about the magnitude of this production. Here we couple own-grown crop yield data with garden and allotment areal surveys and urban fruit tree occurrence to provide one of the first estimates for current and potential food production in a UK urban setting. Current production is estimated to be sufficient to supply the urban population with fruit and vegetables for about 30 days per year, while the most optimistic model results suggest that existing land cultivated for food could supply over half of the annual demand. Our findings provide a baseline for current production whilst highlighting the potential for change under the scaling up of cultivation on existing land
Recommended from our members
Single photon induced symmetry breaking of H2 dissociation
H{sub 2}, the smallest and most abundant molecule in the universe, has a perfectly symmetric ground state. What does it take to break this symmetry? Here we show that the inversion symmetry can be broken by absorption of a linearly polarized photon, which itself has inversion symmetry. In particular, the emission of a photoelectron with subsequent dissociation of the remaining H{sub 2}{sup +} fragment shows no symmetry with respect to the ionic H+ and neutral H atomic fragments. This result is the consequence of the entanglement between symmetric and antisymmetric H{sub 2}{sup +} states resulting from autoionization. The mechanisms behind this symmetry breaking are general for all molecules
Aquaponics in the Built Environment
Aquaponics’ potential to transform urban food production has been documented in a rapid increase of academic research and public interest in the field. To translate this publicity into real-world impact, the creation of commercial farms and their relationship to the urban environment have to be further examined. This research has to bridge the gap between existing literature on growing system performance and urban metabolic flows by considering the built form of aquaponic farms. To assess the potential for urban integration of aquaponics, existing case studies are classified by the typology of their building enclosure, with the two main categories being greenhouses and indoor environments. This classification allows for some assumptions about the farms’ performance in their context, but a more in-depth life cycle assessment (LCA) is necessary to evaluate different configurations. The LCA approach is presented as a way to inventory design criteria and respective strategies which can influence the environmental impact of aquaponic systems in the context of urban built environments
Common Limitations of Image Processing Metrics:A Picture Story
While the importance of automatic image analysis is continuously increasing,
recent meta-research revealed major flaws with respect to algorithm validation.
Performance metrics are particularly key for meaningful, objective, and
transparent performance assessment and validation of the used automatic
algorithms, but relatively little attention has been given to the practical
pitfalls when using specific metrics for a given image analysis task. These are
typically related to (1) the disregard of inherent metric properties, such as
the behaviour in the presence of class imbalance or small target structures,
(2) the disregard of inherent data set properties, such as the non-independence
of the test cases, and (3) the disregard of the actual biomedical domain
interest that the metrics should reflect. This living dynamically document has
the purpose to illustrate important limitations of performance metrics commonly
applied in the field of image analysis. In this context, it focuses on
biomedical image analysis problems that can be phrased as image-level
classification, semantic segmentation, instance segmentation, or object
detection task. The current version is based on a Delphi process on metrics
conducted by an international consortium of image analysis experts from more
than 60 institutions worldwide.Comment: This is a dynamic paper on limitations of commonly used metrics. The
current version discusses metrics for image-level classification, semantic
segmentation, object detection and instance segmentation. For missing use
cases, comments or questions, please contact [email protected] or
[email protected]. Substantial contributions to this document will be
acknowledged with a co-authorshi
Understanding metric-related pitfalls in image analysis validation
Validation metrics are key for the reliable tracking of scientific progress
and for bridging the current chasm between artificial intelligence (AI)
research and its translation into practice. However, increasing evidence shows
that particularly in image analysis, metrics are often chosen inadequately in
relation to the underlying research problem. This could be attributed to a lack
of accessibility of metric-related knowledge: While taking into account the
individual strengths, weaknesses, and limitations of validation metrics is a
critical prerequisite to making educated choices, the relevant knowledge is
currently scattered and poorly accessible to individual researchers. Based on a
multi-stage Delphi process conducted by a multidisciplinary expert consortium
as well as extensive community feedback, the present work provides the first
reliable and comprehensive common point of access to information on pitfalls
related to validation metrics in image analysis. Focusing on biomedical image
analysis but with the potential of transfer to other fields, the addressed
pitfalls generalize across application domains and are categorized according to
a newly created, domain-agnostic taxonomy. To facilitate comprehension,
illustrations and specific examples accompany each pitfall. As a structured
body of information accessible to researchers of all levels of expertise, this
work enhances global comprehension of a key topic in image analysis validation.Comment: Shared first authors: Annika Reinke, Minu D. Tizabi; shared senior
authors: Paul F. J\"ager, Lena Maier-Hei
- …